Vol. 23, núm. 2 marzo-abril 2022
Redes de interacciones para el estudio de la biodiversidad
Ek del Val de Gortari CitaResumen
La biodiversidad puede medirse de muchas formas, en este artículo se aborda la idea novedosa de utilizar las redes de interacción entre especies como un método para evaluarla. Las redes de interacción son una herramienta analítica que describe cómo se relacionan las especies en un ecosistema. Las redes de interacción nos permiten ir más allá de conocer a los participantes —las especies— de una puesta en escena —el ecosistema—. A través de ellas podemos saber el rol que está jugando cada participante y cómo se relacionan entre sí para que la puesta en escena pueda desarrollarse bien. Nos dan una fotografía de cómo se asocian las comunidades de especies en un lugar y tiempo determinado, y permiten evaluar el funcionamiento de un ecosistema. Con su estudio podemos identificar cuáles son las especies más importantes de un ecosistema, y esta información puede usarse para llevar a cabo acciones de restauración ambiental enfocándose en las especies centrales.
Palabras clave: interacciones bióticas, mutualismo, antagonismo, funcionamiento del ecosistema.
Interaction networks to study biodiversity
Abstract
Biodiversity can be measured in many ways; this article addresses the novel idea of using interaction networks between species as an assessment method. Interaction networks are an analytical tool that describes how species in an ecosystem are related. Interaction networks allow us to go beyond knowing the participants —the species— of a staging —the ecosystem—. Through them we can know the role that each participant is playing and how they relate to each other, so that the staging can develop well. They give us a picture of how communities of species are associated in a given place and time, and allow us to evaluate the functioning of an ecosystem. With their study we can identify which are the most important species in an ecosystem, and this information can be used to carry out environmental restoration actions focusing on the central species.
Keywords: biotic interactions, mutualism, antagonism, ecosystem functioning.
La biodiversidad y las redes
Los seres humanos hemos estado interesados en la vida que nos rodea desde el inicio de los tiempos. Las investigaciones para conocer y entender la biodiversidad datan de los griegos, con Aristóteles, e históricamente se han enfocado en contabilizar el número de especies que existen en un lugar. Esta aproximación nos ha permitido entender quiénes son las especies habitantes de un sitio en particular, si son muchas o pocas, cuáles son los lugares más biodiversos de la Tierra y qué tan diferentes son entre sí dos ecosistemas.
Hoy se sabe que la mayor diversidad de especies se alberga en los ecosistemas cercanos a los trópicos, pero también que existen algunos grupos que tienen otros patrones de diversidad, como las abejas que presentan un mayor número de especies en las zonas mediterráneas. Sin embargo, todavía existen lugares poco explorados en los que no se conoce en su totalidad la diversidad local, éstos pudieran ser una excepción a la regla, aunque parece que los patrones generales de distribución a nivel planetario sí los conocemos.
No obstante, el conocer la diversidad no es equivalente a entender el funcionamiento del ecosistema, es decir, qué hace cada especie y como se asocian entre sí para mantener el ecosistema funcionando. Entender el funcionamiento de los ecosistemas se ha vuelto una pregunta relevante dado el panorama actual de su modificación y destrucción a nivel global. Muchos nos preguntamos cómo podemos restaurar o reestablecer los ecosistemas que han sido transformados: ¿necesitamos reintroducir todas las especies que han desaparecido para que el ecosistema siga funcionando?, ¿en qué medida los bosques y selvas fragmentados y perturbados son capaces de mantener un buen funcionamiento ecosistémico?
Para contestar dichas preguntas, se puede estudiar cómo las especies que conviven en un lugar se asocian o interactúan entre sí. Esta aproximación utiliza las llamadas redes de interacción entre especies, una metodología que ha ganado popularidad en los últimos 30 años. Las redes de interacción tratan de entender cómo se conforman las comunidades de especies para poder coexistir en el tiempo y el espacio. Pese a que su aplicación en la ecología es reciente, sus fundamentos surgieron mucho antes en el ámbito de las matemáticas y de las ciencias sociales, con la teoría de sistemas.1 Dado que para el análisis de redes se requiere una capacidad de cálculo importante, no fue hasta que las computadoras personales se volvieron comunes que las redes de interacción comenzaron a ser una aproximación analítica utilizada en diferentes campos de conocimiento (Ings y Hawes 2019).
Construyendo redes de interacción
¿Pero cómo se construye una red de interacción? Bueno, vamos por partes. En primer lugar, hay que identificar qué tipo de interacción es la que estamos interesados en investigar. Las interacciones entre especies son múltiples y van desde antagonistas, como la depredación o la competencia; pasando por el comensalismo, que implica que algunas especies son beneficiadas por la presencia de las otras; hasta llegar al mutualismo, donde ambos grupos de especies interactuantes se benefician entre sí. Con este contexto en mente, podemos estudiar, por ejemplo, una red de interacciones mutualistas entre plantas y hongos micorrízicos (hongos que viven asociados con las raíces de las plantas), una red de interacciones entre carnívoros y sus presas, o una red comensalista entre plantas nodrizas (que protegen a otras) y plantas que son facilitadas por la presencia de éstas. ¿A ti qué otra se te ocurre?
El segundo paso es hacer un muestreo sistemático para establecer qué especie se relaciona con cuál otra y qué tan frecuente es esta asociación. Es importante realizar el muestreo varias veces, para poder captar el mayor número de interacciones posibles, considerando que éstas pueden cambiar a lo largo de las estaciones o con la variación interanual climática. En este punto siempre nos enfrentamos a un problema: establecer cuándo hemos identificado todas las interacciones posibles de una red. Por suerte, existen técnicas que nos permiten determinar el momento en el que tenemos un muestreo suficiente, para ello, se emplean curvas de acumulación de interacciones, que cuantifican cuántas interacciones nuevas encontramos cada vez que muestreamos, e identifican el punto en el que ya no encontramos nuevas, es decir, cuando tenemos la mayor parte de las interacciones de una comunidad.
Al fin, cuando contamos con la información suficiente, podemos pasar al siguiente paso, donde se construye la matriz de interacciones (ver figura 1A). Aquí cada especie se representa como un nodo y la interacción o vínculo se puede graficar con una línea, para observar fácilmente cuál es el patrón de la red de interacciones que encontramos en un sitio en particular (ver figura 1B). Además de la visualización, se pueden calcular diferentes parámetros de la red de interés, por ejemplo, su estabilidad, especialización o susceptibilidad a la extinción, así como reconocer las especies que son centrales o secundarias a la red.
Figura 1. A) Matriz de interacciones entre plantas y hongos. El cuadrado azul representa que se observó una interacción. B) Red de interacción entre plantas y hongos, cada cuadrado representa una especie, en verde las plantas y en morado los hongos.
Pasemos ahora a un ejemplo: podemos pensar en una red de interacciones de polinización entre plantas con flores e insectos nectarívoros (que se alimentan de néctar) o polinívoros (que comen polen). Desde las primeras observaciones naturalistas, se sabe que no todos los animales visitan todas las plantas con flores presentes en un lugar, ni todas las plantas son visitadas por los mismos animales, o sea, existe cierta especialización. Además, hay algunas plantas que se asocian con muchos animales, mientras que otras con pocas. Si seguimos los pasos que comentamos anteriormente, primero vemos que este tipo de redes son consideradas como mutualistas, puesto que ambos grupos de participantes se benefician de la asociación: en este caso las plantas se logran reproducir gracias al transporte de polen de los animales que visitan, mientras que los visitantes se alimentan ya sea del néctar o polen de las flores. Ahora podríamos ir a muestrear a las abejas, abejorros y flores, cosa que los ecólogos han hecho miles y miles de veces. En este caso, la mayoría de las redes de interacción de polinización que se han estudiado tienen una estructura anidada, donde hay insectos generalistas que visitan muchas especies de planta (como algunas mariposas) o insectos especialistas que solamente visitan una o dos especies, y hay plantas que son visitadas por muchas, y otras por pocas especies de insectos (ver figura 2A).
Figura 2. Ejemplos de redes de interacción. A) Red anidada donde se muestran las interacciones entre polinizadores (mariposas) y plantas con flores. B) Red modular donde se muestran las interacciones entre herbívoros (orugas) y plantas. Los íconos pertenecen a thenounproject.com bajo la autoría de oruga (Kaitlin Chassagne), planta (Ecem AfacanTR) y mariposa (Oliver Kittler SK) y la planta con flores a Flaticon.com.
Te voy a contar otros ejemplos. Un caso interesante son las redes de interacciones antagonistas, como una de herbívoros que se alimentan de plantas. Se ha visto que éstas tienen una estructura modular: pocas especies de herbívoros se alimentan de pocas especies de plantas, y existen algunos herbívoros generalistas. Esto se debe a que, dado que las plantas son afectadas negativamente por la interacción, a través del tiempo se han seleccionado diferentes métodos de defensa, que impiden que un gran número de herbívoros pueda alimentarse de ellas, por lo que existe una mayor especialización de comedores y sólo algunos linajes de herbívoros pueden alimentarse de ciertas plantas (ver figura 2B).
Aplicaciones
Tal vez el punto más importante del estudio de la biodiversidad a través de las redes de interacción es que nos permite identificar a las especies clave para el funcionamiento del ecosistema. Por ejemplo, aquellas que tienen un mayor número de interacciones pueden ser consideradas como especies núcleo o centrales. Esta información resulta muy útil cuando queremos restaurar un ecosistema que ha sido degradado, ya que las especies centrales pueden ser reintroducidas a los sitios deteriorados y, con ello, se puede propiciar el que lleguen las especies asociadas.
Así, como estábamos interesadas en el punto anterior con mi grupo de trabajo, pusimos a prueba esta metodología en el bosque tropical caducifolio de la costa de Jalisco. Por varios años estudiamos las redes de interacción entre plantas y orugas, de tal manera que detectamos qué especies de planta se asociaban con un mayor número especies de orugas. Estas especies de planta se seleccionaron para ser sembradas en una restauración de parcelas que habían sido deforestadas para la producción ganadera y posteriormente abandonadas. Después de dos años de siembra, evaluamos qué orugas estaban colonizando las plantas sembradas. Tuvimos una grata sorpresa porque, efectivamente, las plantas que habíamos identificado como especies clave, por la diversidad de orugas que albergaban, fueron las que en el sitio restaurado también tuvieron una mayor diversidad asociada. En otras palabras, logramos replicar la red de interacción y así fomentar la restauración del sitio.
Además, el conocer las redes de interacción de un ecosistema permite evaluar cómo es afectada la biodiversidad con los disturbios naturales o con las perturbaciones antropogénicas. Al comparar las redes de interacción de un sitio perturbado con el ecosistema de referencia, se puede evaluar en qué medida la perturbación afectó las asociaciones entre las especies y si los atributos de la red de interacción se modificaron. Esto nos permitiría ayudar a la pronta recuperación del sitio, al fomentar la proliferación de las especies que sabemos son claves en el ecosistema.
Nuevas avenidas de investigación
Una de las innovaciones más emocionantes en el campo es la identificación de especies por técnicas moleculares, al utilizar métodos como el código de barras (ver figura 3). Con él, las redes de interacción serán más sencillas de estudiar, sin necesidad de realizar muchas observaciones en campo y por mucho tiempo. Por ejemplo, se puede saber qué hongos están asociados con las raíces de las plantas al secuenciar una muestra de suelo asociada a las raíces, o cuál es el alimento de los escarabajos bupréstidos (escarabajos que se alimentan del interior de los árboles en su etapa larvaria) al secuenciar su contenido estomacal. De esta manera, si se realiza una buena colecta de raíces o de escarabajos en un lugar determinado podríamos conocer la red de interacciones que establecen con los hongos y las plantas, sin necesariamente observar la interacción. Incluso, hay quien sugiere que podemos evaluar todo un ecosistema muestreando el adn que se encuentra flotando en el aire.
Figura 3. Código de barras de la vida.
Otro camino en la investigación moderna es el estudio de redes de redes. Es decir, no solamente redes bipartitas de quien se asocia con quién, sino redes mas grandes que evalúan cómo esas especies se asocian con otro nivel trófico, por ejemplo, plantas con herbívoros y con depredadores. (ver figura 4). Esta aproximación permite una visión más detallada del funcionamiento de un lugar, pero evidentemente también es mucho más difícil de desarrollar. Se necesitan realizar un trabajo multidisciplinario para que los expertos en diferentes grupos puedan aportar las identificaciones de las especies interactuantes, así como muchos años de estudio para poder recabar toda la información.
Figura 4. Red de interacciones múltiples. Imagen elaborada por Manuel Lobato.
Como puedes ver estas nuevas aproximaciones al estudio de la diversidad nos permiten ir más allá de conocer a los participantes (las especies) de una puesta en escena (el ecosistema). A través de las redes podemos saber el rol que está jugando cada participante y cómo se relacionan entre sí para que la puesta en escena pueda desarrollarse bien. Espero que con esta probadita te animes a conocer más sobre el tema o incluso que utilices a las redes de interacción como parte de tu investigación.
Referencias
- Dáttilo, W., Guimareaes, P. R., y Izzo, T. J. (2013). Spatial structure of ant–plant mutualistic Networks. Oikos, 122, 1643-1648.
- Hebert, P. D., Cywinska, A., Ball, S. L., y deWaard, J. R. (2003). Biological identifications through dna barcodes. Proceedings. Biological sciences, 270(1512), 313-321. https://doi.org/10.1098/rspb.2002.2218.
- Ings, T. C., y J. E., Hawes. (2018). The History of Ecological Networks. En W. Dáttilo y V. Rico-Gray, Ecological Networks in the Tropics (pp. 15-28). Springer Verlag. https://doi.org/10.1007/978-3-319-68228-0_8.
- Jordano, P., Vázquez, D., y Bascompte, J. (2009). Redes complejas de interacciones mutualistas planta-animal. En R. Medel, M. A. Aizen, y R. Zamora, Ecología y evolución de interacciones planta-animal (pp. 17-41). Editorial Universitaria.
Recepción: 14/12/2021. Aprobación: 01/03/2022.