Una luz frente a la pérdida de visión por diabetes
DOI:
https://doi.org/10.22201/codeic.16076079e.2018.v19n5.a3Palabras clave:
diabetes, edema macular diabético, edema macular por diabetes, canales iónicos Transient Receptor Potential Vanilloid 4 (TRPV4), antagonistas, tratamiento terapéuticoResumen
Encontrar novedosas estrategias terapéuticas para atender el edema macular por diabetes, también llamado edema macular diabético (EMD), es un reto importante en la actualidad ya que esta complicación de la diabetes mellitus de tipo 1 y 2 es la principal causante de pérdida de visión en personas con diabetes. El EMD es una acumulación de líquido en la retina que se debe a un aumento excesivo de la permeabilidad retiniana y la formación de depósitos en la retina central o mácula. La magnitud del problema puede ser apreciada al considerar que 6.4 millones de mexicanos han sido diagnosticados con diabetes y que el 29% de ellos presenta EMD. En este artículo se revisarán las opciones terapéuticas actuales para el EMD y sus limitantes, y se presentarán las evidencias que apoyan el uso potencial de fármacos bloqueadores de los canales iónicos Transient Receptor Potential Vanilloid 4 (TRPV4) como alternativa terapéutica novedosa para el EMD. Un estudio recién realizado permitió comprobar que el bloqueo de TRPV4 elimina el aumento en la permeabilidad retiniana inducido por diabetes, alteración que promueve el EMD. Por lo anterior y en vista de que antagonistas para TRPV4 se usan actualmente para mitigar el edema pulmonar en pacientes, se espera que próximamente los fármacos bloqueadores de TRPV4 se puedan usar como agentes curativos para el EMD.
Citas
Amoaku, W. M., Saker, S. y Stewart, E. A. (2015). A review of therapies for diabetic macular oedema and rationale for combination therapy. Eye (Lond), 29(9), 1115-1130. DOI: https://doi.org/10.1038/eye.2015.110.
Arredondo Zamarripa, D., Noguez Imm, R., Bautista Cortes, A. M., Vazquez Ruiz, O., Bernardini, M., Fiorio Pla, A., . . . Thebault, S. (2017). Dual contribution of TRPV4 antagonism in the regulatory effect of vasoinhibins on blood-retinal barrier permeability: diabetic milieu makes a difference. Sci Rep, 7(1), 13094. DOI: https://doi.org/10.1038/s41598-017-13621-8.
Balakrishna, S., Song, W., Achanta, S., Doran, S. F., Liu, B., Kaelberer, M. M., . . . Jordt, S. E. (2014). TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury. Am J Physiol Lung Cell Mol Physiol, 307(2), L158-172. DOI: https://doi.org/10.1152/ajplung.00065.2014.
Bhagat, N., Grigorian, R. A., Tutela, A. y Zarbin, M. A. (2009). Diabetic macular edema: pathogenesis and treatment. Surv Ophthalmol, 54(1), 1-32. DOI: https://doi.org/10.1016/j.survophthal.2008.10.001.
Cheung, M., Bao, W., Behm, D. J., Brooks, C. A., Bury, M. J., Dowdell, S. E., . . . Thorneloe, K. S. (2017). Discovery of GSK2193874: An Orally Active, Potent, and Selective Blocker of Transient Receptor Potential Vanilloid 4. ACS Med Chem Lett, 8(5), 549-554. DOI: https://doi.org/10.1021/acsmedchemlett.7b00094.
Cioffi, D. L., Lowe, K., Alvarez, D. F., Barry, C. y Stevens, T. (2009). TRPing on the lung endothelium: calcium channels that regulate barrier function. Antioxid Redox Signal, 11(4), 765-776. DOI: https://doi.org/10.1089/ARS.2008.2221.
Corcóstegui Guraya, B. yMoreno Manresa, J. (2001). Capítulo 3. Edema macular diabético. Mesa Redonda, 77 Congreso de la Sociedad Española de Oftalmología, Barcelona, 2001, 37-51.
Gilliam, J. C. y Wensel, T. G. (2011). TRP channel gene expression in the mouse retina. Vision Res, 51(23-24), 2440-2452. DOI: https://doi.org/10.1016/j.visres.2011.10.009.
Grace, M. S., Bonvini, S. J., Belvisi, M. G. y McIntyre, P. (2017). Modulation of the TRPV4 ion channel as a therapeutic target for disease. Pharmacol Ther. DOI: https://doi.org/10.1016/j.pharmthera.2017.02.019.
Hamanaka, K., Jian, M. Y., Townsley, M. I., King, J. A., Liedtke, W., Weber, D. S., . . . Parker, J. C. (2010). TRPV4 channels augment macrophage activation and ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol, 299(3), L353-362. DOI: https://doi.org/10.1152/ajplung.00315.2009.
Hamanaka, K., Jian, M. Y., Weber, D. S., Alvarez, D. F., Townsley, M. I., Al-Mehdi, A. B., . . . Parker, J. C. (2007). TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs. Am J Physiol Lung Cell Mol Physiol, 293(4), L923-932. DOI: https://doi.org/10.1152/ajplung.00221.2007.
Hendrick, A. M., Gibson, M. V. y Kulshreshtha, A. (2015). Diabetic Retinopathy. Prim Care, 42(3), 451-464. DOI: https://doi.org/10.1016/j.pop.2015.05.005.
Jie, P., Tian, Y., Hong, Z., Li, L., Zhou, L., Chen, L. y Chen, L. (2015). Blockage of transient receptor potential vanilloid 4 inhibits brain edema in middle cerebral artery occlusion mice. Front Cell Neurosci, 9, 141. DOI: https://doi.org/10.3389/fncel.2015.00141.
Klein, B. E., Moss, S. E., Klein, R. y Surawicz, T. S. (1991). The Wisconsin Epidemiologic Study of Diabetic Retinopathy. XIII. Relationship of serum cholesterol to retinopathy and hard exudate. Ophthalmology, 98(8), 1261-1265. Recuperado de: https://www.ncbi.nlm.nih.gov/pubmed/1923364.
Liedtke, W. y Friedman, J. M. (2003). Abnormal osmotic regulation in TRPV4-/- mice. Proc Natl Acad Sci U S A, 100(23), 13698-13703. DOI: https://doi.org/10.1073/pnas.1735416100.
Liedtke, W., Tobin, D. M., Bargmann, C. I. y Friedman, J. M. (2003). Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proc Natl Acad Sci U S A, 100 Suppl 2, 14531-14536. DOI: https://doi.org/10.1073/pnas.2235619100.
Lu, K. T., Huang, T. C., Tsai, Y. H. y Yang, Y. L. (2017). Transient receptor potential vanilloid type 4 channels mediate Na-K-Cl-co-transporter-induced brain edema after traumatic brain injury. J Neurochem, 140(5), 718-727. DOI: https://doi.org/10.1111/jnc.13920.
Monaghan, K., McNaughten, J., McGahon, M. K., Kelly, C., Kyle, D., Yong, P. H., . . . Curtis, T. M. (2015). Hyperglycemia and Diabetes Downregulate the Functional Expression of TRPV4 Channels in Retinal Microvascular Endothelium. PLoS One, 10(6), e0128359. DOI: https://doi.org/10.1371/journal.pone.0128359.
Morty, R. E. y Kuebler, W. M. (2014). TRPV4: an exciting new target to promote alveolocapillary barrier function. Am J Physiol Lung Cell Mol Physiol, 307(11), L817-821. DOI: https://doi.org/10.1152/ajplung.00254.2014.
Plant, T. D. y Strotmann, R. (2007). TRPV4. Handb Exp Pharmacol. (179), 189-205. DOI: https://doi.org/10.1007/978-3-540-34891-7_11.
Randhawa, P. K. y Jaggi, A. S. (2015). TRPV4 channels: physiological and pathological role in cardiovascular system. Basic Res Cardiol, 110(6), 54. DOI: https://doi.org/10.1007/s00395-015-0512-7.
Regnier, S., Malcolm, W., Allen, F., Wright, J. y Bezlyak, V. (2014). Efficacy of anti-VEGF and laser photocoagulation in the treatment of visual impairment due to diabetic macular edema: a systematic review and network meta-analysis. PLoS One, 9(7), e102309. DOI: https://doi.org/10.1371/journal.pone.0102309.
Reiter, B., Kraft, R., Gunzel, D., Zeissig, S., Schulzke, J. D., Fromm, M. y Harteneck, C. (2006). TRPV4-mediated regulation of epithelial permeability. FASEB J, 20(11), 1802-1812. DOI: https://doi.org/10.1096/fj.06-5772com.
Simonsen, U., Wandall-Frostholm, C., Olivan-Viguera, A. y Kohler, R. (2017). Emerging roles of calcium-activated K channels and TRPV4 channels in lung oedema and pulmonary circulatory collapse. Acta Physiol (Oxf), 219(1), 176-187. DOI: https://doi.org/10.1111/apha.12768.
Thebault, S. (2011). El epitelio pigmentario retiniano como componente de la barrera hemato-retiniana: implicación en la retinopatía diabética. Revista Digital Universitaria, 12(3). Recuperado de: http://www.revista.unam.mx/vol.12/num3/art31/index.html.
Thorneloe, K. S., Cheung, M., Bao, W., Alsaid, H., Lenhard, S., Jian, M. Y., . . . Willette, R. N. (2012). An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci Transl Med, 4(159), 159ra148. DOI: https://doi.org/10.1126/scitranslmed.3004276.
Vergnolle, N., Cenac, N., Altier, C., Cellars, L., Chapman, K., Zamponi, G. W., . . . Bunnett, N. W. (2010). A role for transient receptor potential vanilloid 4 in tonicity-induced neurogenic inflammation. Br J Pharmacol, 159(5), 1161-1173. DOI: https://doi.org/10.1111/j.1476-5381.2009.00590.x.
Vincent, F., Acevedo, A., Nguyen, M. T., Dourado, M., DeFalco, J., Gustafson, A., . . . Duncton, M. A. (2009). Identification and characterization of novel TRPV4 modulators. Biochem Biophys Res Commun, 389(3), 490-494. DOI: https://doi.org/10.1016/j.bbrc.2009.09.007.
Wang, J. K., Huang, T. L., Su, P. Y. y Chang, P. Y. (2015). An updated review of long-term outcomes from randomized controlled trials in approved pharmaceuticals for diabetic macular edema. Eye Sci, 30(4), 176-183. Recuperado de: http://ykxb.amegroups.com/article/view/3523/4246.
Watanabe, H., Davis, J. B., Smart, D., Jerman, J. C., Smith, G. D., Hayes, P., . . . Nilius, B. (2002). Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J Biol Chem, 277(16), 13569-13577. DOI: https://doi.org/10.1074/jbc.M200062200.
Willette, R. N., Bao, W., Nerurkar, S., Yue, T. L., Doe, C. P., Stankus, G., . . . Xu, X. (2008). Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: Part 2. J Pharmacol Exp Ther, 326(2), 443-452. DOI: https://doi.org/10.1124/jpet.107.134551.
Wu, S., Jian, M. Y., Xu, Y. C., Zhou, C., Al-Mehdi, A. B., Liedtke, W., . . . Townsley, M. I. (2009). Ca2+ entry via alpha1G and TRPV4 channels differentially regulates surface expression of P-selectin and barrier integrity in pulmonary capillary endothelium. Am J Physiol Lung Cell Mol Physiol, 297(4), L650-657. DOI: https://doi.org/10.1152/ajplung.00015.2009.
Yau, J. W., Rogers, S. L., Kawasaki, R., Lamoureux, E. L., Kowalski, J. W., Bek, T., . . . Meta-Analysis for Eye Disease Study, G. (2012). Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care, 35(3), 556-564. DOI: https://doi.org/10.2337/dc11-1909.
Yin, J., Hoffmann, J., Kaestle, S. M., Neye, N., Wang, L., Baeurle, J., . . . Kuebler, W. M. (2008). Negative-feedback loop attenuates hydrostatic lung edema via a cGMP-dependent regulation of transient receptor potential vanilloid 4. Circ Res, 102(8), 966-974. DOI: https://doi.org/10.1161/CIRCRESAHA.107.168724.
Yin, J., Michalick, L., Tang, C., Tabuchi, A., Goldenberg, N., Dan, Q., . . . Kuebler, W. M. (2016). Role of Transient Receptor Potential Vanilloid 4 in Neutrophil Activation and Acute Lung Injury. Am J Respir Cell Mol Biol, 54(3), 370-383. DOI: https://doi.org/10.1165/rcmb.2014-0225OC.
Zhang, X., Zeng, H., Bao, S., Wang, N., & Gillies, M. C. (2014). Diabetic macular edema: new concepts in patho-physiology and treatment. Cell Biosci, 4, 27. DOI: https://doi.org/10.1186/2045-3701-4-27.
Zhao, D., Nguyen, C. T., Wong, V. H., Lim, J. K., He, Z., Jobling, A. I., . . . Bui, B. V. (2017). Characterization of the Circumlimbal Suture Model of Chronic IOP Elevation in Mice and Assessment of Changes in Gene Expression of Stretch Sensitive Channels. Front Neurosci, 11, 41. DOI: https://doi.org/10.3389/fnins.2017.00041.
Zhao, P. Y., Gan, G., Peng, S., Wang, S. B., Chen, B., Adelman, R. A., & Rizzolo, L. J. (2015). TRP Channels Localize to Subdomains of the Apical Plasma Membrane in Human Fetal Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci, 56(3), 1916-1923. DOI: https://doi.org/10.1167/iovs.14-15738.
Publicado
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.