Data scientist: encoding the hidden and intangible value of the data
DOI:
https://doi.org/10.22201/codeic.16076079e.2017.v18n7.a2Keywords:
data scientist, data science, Big Data, data mining, data visualizationAbstract
Data science is an emerging discipline of great relevance to all companies that wishing to encode the hidden and intangible value of data. Today more than ever we are connected to more people and devices, we have access to more networks and services, and not there are doubt that we consume and produce greater amounts of data and information. So we require the skills, knowledge, experiences and techniques of data scientists to process, analyze and visualize the data toward information in smarter ways, promoting more and better knowledge of their reality in their contexts. This article explains the main areas in which a data scientist develops (Big data, data mining and data visualization) and the intersections between these, including examples of projects developed by data scientists and the great value that they have known how to code it. In addition, to present an interpretation of the elements that constitute the scientific data.
References
Butler, P. (2010). Visualizing Friendships. Facebook: Facebook Enginering. Recuperado de <https://goo.gl/AaHLN>.
Cakmak, J. (2017). What Is Trump Worth to Twitter? One Analyst Estimates $2 Billion. Fortune.com. Recuperado de <https://goo.gl/AdjDQz>.
Carli, L. (2013). Weather Temperatures. Vis.design. Recuperado de <https://goo.gl/sgDNsS>.
Carli, L. (2014). The World Population Project. Vis.design. Recuperado de <https://goo.gl/jSgpEx>.
Cox, M. y Ellswort, D. (1997). Managing Big Data for Scientific Visualization. ResearchGate.net. Recuperado de <https://goo.gl/DLj8sd>.
Crowd Flower (2017). Data Scientist Report 2017. Crowdflower.com. Recuperado de <https://goo.gl/4XsUKD>.
Davenport, T. H. y Patil, D. J. (2012). Data Scientist: The Sexiest Job of the 21st Century. Harvard Business Review, 90 (10). Recuperado de <https://goo.gl/65IMw1>.
Drucker, P. F. (2004). La sociedad postcapitalista. Medellín, Colombia: Norma
Elahi, E. (2015). Spark and GraphX in the Netflix Recommender System. SlideShare. Recuperado de <https://goo.gl/LUQqx4>.
Few, S. (2013). Data Visualization for Human Perception. En M. Soegaard (2nd Ed.), The Encyclopedia of Human-Computer Interaction. Aarhus, Denmark: The Interaction Design Foundation. Recuperado de: <https://goo.gl/7uYrrp>.
Granville, V. (2016). 40 Techniques Used by Data Scientists. datasciencecentral.com. Recuperado de <https://goo.gl/UmCb9M>.
Han, J. y Kamber, M. (2006). Data Mining Concepts and Techniques. Recuperado de <https://goo.gl/jmXNua>.
Harrison, C. (2007). Bible Cross-References. Chrisharrison.net. Recuperado de <https://goo.gl/21DsY>.
Hilbert, M. y Lopez, P. (2011). The world’s technological capacity to store, communicate, and compute information. Science, 332(6025), 60–65.
IBM (2017). The Cuant Crunch: How the Demand for Data Science Skills is Disrupting the Job Market. Ibm.com. Recuperado de <https://goo.gl/yJ6GtL>.
Monnappa, A. (2017). Data Science vs. Big Data vs. Data Analytics. Simplilearn.com. Recuperado de <https://goo.gl/EAYQRc>.
Moreno, G. S., Stephens, C. R. (2015). Applying Data Mining Techniques to Identify Success Factors in Students Enrolled in Distance Learning: A Case Study. Advances in Artificial Intelligence and Its Applications: Springer. Recuperado de <https://goo.gl/zFLHtJ>.
Moreno, G. S. (2017a). FLEET: Distribución e Inventario de Unidades. Publictableau.com. Recuperado de <https://goo.gl/Db5eXr>.
Moreno, G. S. (2017b). Gasolid: Identificador de Gasolineras en México. Publictableau.com. Recuperado de <https://goo.gl/26iX9C>.
Pujari, A. K. (2001). Data Mining Techniques. Hyderabad, India: Universities Press.
Ratti, C. (2014). Drinking Data. senseable.mit.edu: MIT Senseable City Lab. Recuperado de <https://goo.gl/QkJ4iw>.
Shapiro, G. P., Smyth P. (1996). The KDD Process for Extracting Useful Knowledge from Volumes of Data. Communications of the ACM. Volumen (39, 11), 27-34. Recuperado de <https://goo.gl/L67PYa>.
Van der Aalst, W. M. P. (2014). Data Scientist: The Engineer of the Future. Enterprise Interoperability, volume 7, 13-28. Springer. Recuperado de <https://goo.gl/yiaE9F>.
Vanderbilt, T. (2013). The Science Behind the Netflix Algorithms That Decide What You’ll Watch Next. Wired. Recuperado de <https://goo.gl/aqJqA7>.
Wirth, R., Hipp, J. (2000). CRISP-DM: Towards a Standard Process Model for Data Mining. ResearchGate.com. Recuperado de <https://goo.gl/XevGEB>.
Published
Issue
Section
License
Copyright (c) 2017 Revista Digital Universitaria

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.