An approach to the timeline of cryptographic algorithms
DOI:
https://doi.org/10.22201/codeic.16076079e.2019.v20n5.a7Keywords:
algorithm standardization, asymmetric key cryptography, symmetric key cryptography, post-quantum algorithms, security levelsAbstract
Nowadays, the exchange of information through devices with different characteristics has increased greatly. This brings the need to preserve different security services in the information transmitted between them. Given that computation power continues evolving rapidly, quantum computers will become a great threat in the near future. Since such computers can perform millions of operations in parallel, they will compromise the integrity of algorithms that preserve such security services and, as a consequence, the scenarios where they are used. In this paper, we present an approach to the timeline that cryptographic algorithms maintain, providing a list of challenges that would be facing the algorithms of the future, the post-quantum algorithms.
References
Bernstein, D. J. (2009). Introduction to post-quantum cryptography. En Post-quantum cryptography (pp. 1-14). Berlin, Heidelberg: Springer.
Chen, L., Jordan, S., Liu, Y. K., Moody, D., Peralta, R. y Smith-Tone, D. (2016). Report on post-quantum cryptography. Gaithersburg, MD: US Department of Commerce, National Institute of Standards and Technology. DOI: http://dx.doi.org/10.6028/NIST.IR.8105.
Dahmen-Lhuissier, S. (2015). Quantum-Safe Cryptography (QSC). Recuperado de: https://www.etsi.org/newsroom/news/11-technologies-clusters/technologies?start=20.
Hallgren, S. y Vollmer, U. (2009). Quantum computing. En Post-quantum cryptography (pp. 15-34). Berlin, Heidelberg: Springer.
Iashchenko, V. V. (2002). Cryptography: An Introduction. s.l.: American Mathematical Society.
Internet Engineering Task Force (IETF). (2018). Recuperado de: https://www.ietf.org/.
ISO (2018). International Organization for Standardization. Recuperado de: https://www.iso.org/home.html.
Menezes, A., van Oorschot, P., Vanstone, S. y Rosen, K. (1997). Handbook of Applied Cryptography. Boca Raton: CRC Press.
National Institute of Standards and Technology (NIST) (2001). FIPS 140-2: Security Requirements for Cryptographic Modules. Recuperado de: https://csrc.nist.gov/publications/detail/fips/140/2/final.
National Institute of Standards and Technology (NIST). (2018a). National Institute of Standards and Technology. Recuperado de https://www.nist.gov/.
National Institute of Standards and Technology (NIST). (2018b). Post-Quantum Cryptography. Recuperado de: https://csrc.nist.gov/Projects/Post-Quantum-Cryptography.
National Institute of Standards and Technology (NIST). (2018c). Post-Quantum Cryptography Standardization. Recuperado de: https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantumcryptographystandardization.
Advancing open standards for the information society (OASIS). 2018). Organization of Advancing Open Standards for the Information Society. Recuperado de: https://www.oasis-open.org/.
Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. En Proceedings. 35th Annual Symposium on Foundations of Computer Science (pp. 124-134). DOI: https://doi.org/10.1109/SFCS.1994.365700.
Singh, S. (2000). The code book. Nueva York, NY: Anchor Books.
Workshop on Cybersecurity in a Post-Quantum World (2015) Recuperado de: https://csrc.nist.gov/Events/2015/Workshop-on-Cybersecurity-in-a-Post-Quantum-World.
Solana, P. X (2009). Antecedentes y perspectivas de estudio en historia de la Criptografía [tesis de licenciatura]. Recuperado de: https://e-archivo.uc3m.es/handle/10016/6173.
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.