Communication between bacteria: Pseudomonas aeruginosa’s WhatsApp
Keywords:
quorum sensing, bacterial communication, infections, bioluminescenceAbstract
Communication is based on an exchange of information using a language, that goes from a sender to a receiver, which receives the message and can —or not— send some response in a determined context. Currently, it is possible to establish simple, efficient, and fast communication regardless of distance, since existing technological tools, such as mobile devices, use applications such as WhatsApp, Facebook Messenger, Twitter, and others. The bacteria have a communication system similar to WhatsApp, known as Quorum Sensing (qs). In this article, the similarities between these communication systems will be described. Several investigations have determined that qs is a type of cell-cell communication that plays a key role in regulation of virulence gene expression in different bacterial pathogens, due to the fact that it produces and releases small chemical signals called “autoinducers”, and that these are similar to cybernetic language. The human pathogenic bacterium Pseudomonas aeruginosa has been described to use this type of communication to modulate the production of virulence factors, provoking acute and chronic infections in immunocompromised persons and cystic fibrosis patients, causing infections to be difficult to eradicate with the supply of conventional antibiotics. Thus, it is important to understand the bacterial communication “WhatsApp” as an antibacterial control mechanism in infected individuals.
References
Ahator, S. D., y Zhang, L. (2019). Small Is Mighty—Chemical Communication Systems in Pseudomonas aeruginosa. Annual review of microbiology, 73, 559-578. https://doi.org/10.1146/annurev-micro-020518-120044.
El rincón curioso. (2018, 19 de septiembre). 5 PLAYAS INCREÍBLES que se ILUMINAN en la OSCURIDAD . YouTube. https://youtu.be/Jg_d9orAG1o.
Oosthuizen, J. (2013). [Pseudomonas aeruginosa bacteria]. Centers for Disease Control. https://phil.cdc.gov/details.aspx?pid=16876.
Lee, J., y Zhang, L. (2015). The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell, 6(1), 26-41. https://doi.org/10.1007/s13238-014-0100-x.
Lee, J., Wu, J., Deng, Y., Wang, J., Wang, C., Wang, J., Chang, C., Dong, Y., Williams, P. y Zhang, L. H. (2013). A cell-cell communication signal integrates quorum sensing and stress response. Nature chemical biology, 9(5), 339-343. https://doi.org/10.1038/nchembio.1225.
Marquina Díaz, D., y Santos de la Sen, A. (2011). Sistemas de quorum sensing en bacterias. Reduca (Biología), 3(5), 39-55. http://revistareduca.es/index.php/biologia/article/view/820/835.
Moradali, M. F., Ghods, S., y Rehm, B. H. (2017). Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Frontiers in cellular and infection microbiology, 7(39). https://doi.org/10.3389/fcimb.2017.00039.
Papenfort, K., y Bassler, B. L. (2016). Quorum sensing signal–response systems in Gram-negative bacteria. Nature Reviews Microbiology, 14(9), 576-588. https://doi.org/10.1038/nrmicro.2016.89.
Soberón, G. (2001). Pseudomonas aeruginosa. En E. Martínez Romero y J. C. Martínez Romero (Eds.), Microbiología en línea (cap. 3). http://www.biblioweb.tic.unam.mx/libros/microbios/Cap3/.
Published
Issue
Section
License
Copyright (c) 2022 Revista Digital Universitaria

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.