The enemy of my enemy is… A virus that attacks bacteria: bacteriophages
DOI:
https://doi.org/10.22201/cuaieed.16076079e.2021.22.4.1Keywords:
phage therapy, endolysin, viral like particles (VLP), bacterial ghostsAbstract
Virus particles infect all life forms. Bacteriophage viruses, the ones that infect bacteria, were discovered before antibiotics. Despite its small size, they have contributed to scientific development such as the discovery of many enzymes with applications in molecular biology. In this paper we describe general aspects of their biology and their contribution to health, along with successful cases of antimicrobial therapy using bacteriophages in humans and animals. Despite the fact that there are no commercial authorizations for its global use, there are commercial bacteriophage formulations for the food industry. We will describe the main weapon of bacteriophages, endolysin, an enzyme useful for lysing bacteria. Endolysins are considered safer than bacteriophages because they lack genetic material. Bacteriophages and endolysins have revolutionary applications in medicine, such as the viral-like particles, useful for small molecules delivery or vaccine design, in the generation of bacterial ghosts and in the diagnostic and detection of pathogenic bacteria.
References
Anany, H., Chen, W., Pelton, R. y Griffiths, M. W. (2011). Biocontrol of Listeria monocytogenes and Escherichia coli O157: H7 in meat by using phages immobilized on modified cellulose membranes. Applied and environmental microbiology, 77(18), 6379-6387. https://doi.org/10.1128/AEM.05493-11.
Bai, J., Kim, Y. T., Ryu, S. y Lee, J. H. (2016). Biocontrol and rapid detection of food-borne pathogens using bacteriophages and endolysins. Frontiers in microbiology, 7, 474. https://doi.org/10.3389/fmicb.2016.00474.
Bárdy, P., Pantůček, R., Benešík, M. y Doškař, J. (2016). Genetically modified bacteriophages in applied microbiology. Journal of Applied Microbiology, 121(3), 618-33. https://doi.org/10.1111/jam.13207.
Barrera, R. C.I., Cajero, J.M., Oviedo, B. J., Nuñez A. R. E., Kawabe, K. L. y Alarcón, V. J. J. (2015). Advances in the use of endolysins: general remarks, structure, applications, genetic modifications and perspectives. En A. Mendez-Vilas (Ed), The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs (pp. 259-268). Formatex Research Center.
Centers for Disease Control and Prevention (cdc). (2020, 13 de marzo). Antibiotic / Antimicrobial Resistance (ar/amr). About Antibiotic Resistance. https://www.cdc.gov/drugresistance/about.html.
Chauthaiwale, V. M., Therwath, A. y Deshpande, V. V. (1992). Bacteriophage lambda as a cloning vector. Microbiology and Molecular Biology Reviews, 56(4), 577-591.
Dedrick, R. M., Guerrero,B. C. A., Garlena, R. A., Russell, D. A., Ford, K., Harris, K., Gilmour K. C., Soothill J., Jacobs S. D., Schooley R. T., Hatfull, G. F. y Spencer, H. (2019). Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nature medicine, 25(5), 730-733. https://doi.org/10.1038/s41591-019-0437-z.
Deng, L., Ibañez, L. I., Van den Bossche, V., Roose, K., Youssef, S. A., De Bruin, A., Fiers W. y Saelens, X. (2015). Protection against influenza A virus challenge with M2e-displaying filamentous Escherichia coli phages. PLoS One, 10(5), e0126650. https://doi.org/10.1371/journal.pone.0126650.
Dion, M. B., Oechslin, F. y Moineau, S. (2020). Phage diversity, genomics and phylogeny. Nature Reviews Microbiology, 18, 125–138. https://doi.org/10.1038/s41579-019-0311-5.
Düring, K., Porsch, P., Fladung, M. y Lörz, H. (1993). Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora. The Plant Journal, 3(4), 587-598. https://doi.org/10.1046/j.1365-313X.1993.03040587.x.
Gondil, V. S., Harjai, K. y Chhibber, S. (2020). Endolysins as emerging alternative therapeutic agents to counter drug-resistant infections. International journal of antimicrobial agents, 55(2), 105844. https://doi.org/10.1016/j.ijantimicag.2019.11.001.
Hajam, I. A., Dar, P. A., Won, G. y Lee, J. H. (2017). Bacterial ghosts as adjuvants: mechanisms and potential. Veterinary Research, 48, 37. https://doi.org/10.1186/s13567-017-0442-5.
Hawkins, C., Harper, D., Burch, D., Änggård, E. y Soothill, J. (2010). Topical treatment of Pseudomonas aeruginosa otitis of dogs with a bacteriophage mixture: a before/after clinical trial. Veterinary microbiology, 146(3-4), 309-313. https://doi.org/10.1016/j.vetmic.2010.05.014.
Hoyles, L., McCartney, A. L., Neve, H., Gibson, G. R., Sanderson, J. D., Heller, K. J. y Van Sinderen, D. (2014). Characterization of virus-like particles associated with the human faecal and caecal microbiota. Research in microbiology, 165(10), 803-812. https://doi.org/10.1016/j.resmic.2014.10.006.
Jackson, D. A., Symons, R. H. y Berg, P. (1972). Biochemical method for inserting new genetic information into dna of Simian Virus 40: circular SV40 dna molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proceedings of the National Academy of Sciences, 69(10), 2904-2909. https://doi.org/10.1073/pnas.69.10.2904.
Jun, S. Y., Jung, G. M., Yoon, S. J., Oh, M. D., Choi, Y. J., Lee, W. J. y Kang, S. H. (2013). Antibacterial properties of a pre-formulated recombinant phage endolysin, sal-1. International journal of antimicrobial agents, 41(2), 156-161. https://doi.org/10.1016/j.ijantimicag.2012.10.011.
Jun, S. Y., Jung, G. M., Yoon, S. J., Youm, S. Y., Han, H. Y., Lee, J. H. y Kang, S. H. (2016). Pharmacokinetics of the phage endolysin-based candidate drug sal 200 in monkeys and its appropriate intravenous dosing period. Clinical and Experimental Pharmacology and Physiology, 43(10), 1013-1016. https://doi.org/10.1111/1440-1681.12613.
Kim, J. H., Choresca, C. H., Shin, S. P., Han, J. E., Jun, J. W. y Park, S. C. (2013). Biological Control of Aeromonas salmonicida subsp. salmonicida Infection in Rainbow Trout (Oncorhynchus mykiss) Using Aeromonas Phage pas-1. Transboundary and emerging diseases, 62(1), 81-86. https://doi.org/10.1111/tbed.12088.
Kim, J. y Winfree, E. (2011). Synthetic in vitro transcriptional oscillators. Molecular systems biology, 7, 465. https://doi.org/10.1038/msb.2010.119.
Kim, S., Lee, D. W., Jin, J. S. y Kim, J. (2020). Antimicrobial activity of LysSS, a novel phage endolysin, against Acinetobacter baumannii and Pseudomonas aeruginosa. Journal of Global Antimicrobial Resistance, 22, 32-39. https://doi.org/10.1016/j.jgar.2020.01.005.
Love, M. J., Bhandari, D., Dobson, R. C. y Billington, C. (2018). Potential for bacteriophage endolysins to supplement or replace antibiotics in food production and clinical care. Antibiotics, 7(1), 17. https://doi.org/10.3390/antibiotics7010017
Mei, Y., Wang, Y., Chen, H., Sun, Z. S. y Ju, X. D. (2016). Recent progress in crispr/Cas9 technology. Journal of Genetics and Genomics, 43(2), 63-75. https://doi.org/10.1016/j.jgg.2016.01.001.
Melo, L. D., Oliveira, H., Pires, D. P., Dabrowska, K. y Azeredo, J. (2020). Phage therapy efficacy: a review of the last 10 years of preclinical studies. Critical Reviews in Microbiology, 46(1), 78-99. https://doi.org/10.1080/1040841X.2020.1729695.
Organización Mundial de la Salud (oms). (2020, septiembre). El enfoque multisectorial de la oms “Una salud”. https://www.who.int/features/qa/one-health/es/.
Richter, L., Janczuk R., M., Niedziółka J.J., Paczesny J., Hołyst, R. (2018). Recent advances in bacteriophage-based methods for bacteria detection. Drug Discovery Today, 23(2), 448-455. https://doi.org/10.1016/j.drudis.2017.11.007.
Salmond, G. P. y Fineran, P. C. (2015). A century of the phage: past, present and future. Nature Reviews Microbiology, 13(12), 777-786. https://doi.org/10.1038/nrmicro3564.
Sergueev, K. V., He, Y., Borschel, R. H., Nikolich, M. P. y Filippov, A. A. (2010). Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time pcr. PLoS One, 5(6), e11337. https://doi.org/10.1371/journal.pone.0011337.
Schooley, R. T., Biswas, B., Gill, J. J., Hernández M. A., Lancaster, J., Lessor, L. y Segall, A. M. (2017). Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrobial agents and chemotherapy, 61(10), e00954-17. https://doi.org/10.1128/AAC.00954-17.
Sulakvelidze, A. y Kutter, E. (2004). Bacteriophage Therapy in Humans. En E. Kutter y A. Sulakvelidze (Eds.), Bacteriophages: biology and applications. crc-Press. https://doi.org/10.1201/9780203491751.ch14.
Zermeño-Cervantes, L. A., Makarov, R., Lomelí-Ortega, C. O., Martínez-Díaz, S. F. y Cardona-Félix, C. S. (2018). Recombinant Lys vpms 1 as an endolysin with broad lytic activity against Vibrio parahaemolyticus strains associated to acute hepatopancreatic necrosis disease. Aquaculture Research, 49(4), 1723-1726. https://doi.org/10.1111/are.13577.
Zduńczyk, S. y Janowski, T. (2020). Bacteriophages and associated endolysins in therapy and prevention of mastitis and metritis in cows: Current knowledge. Animal Reproduction Science, 218, 106504. https://doi.org/10.1016/j.anireprosci.2020.106504.
Zhang, H., Bao, H., Billington, C., Hudson, J. A. y Wang, R. (2012). Isolation and lytic activity of the Listeria bacteriophage endolysin LysZ5 against Listeria monocytogenes in soya milk. Food microbiology, 31(1), 133-136. https://doi.org/10.1016/j.fm.2012.01.005.
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.