File system, database managers and Hadoop, evolution or retrograde?

Authors

  • María del Pilar Ángeles Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.22201/cuaieed.16076079e.2021.22.6.6

Keywords:

transactional and analytical systems, business intelligence, big data, data science, in memory databases

Abstract

The evolution of information systems has been marked by changes in processing, response time, and type and quantity of information. In the beginning, the need was to automate the daily operation of a business. Subsequently, analysis was required to make strategic business decisions. Currently, it is necessary to predict future events or behaviors from large amounts of varied data from social media, videos, or emails. The most recent proposals could make us think why are we returning to the starting point, if we started with file systems and then evolved to relational database managers, which solved various problems of insecurity and lack of data consistency.

This article highlights the changes in information systems technologies according to the needs of organizations, reflects on whether these represent an evolution or a setback, and suggests technological solutions according to each given need, because that in style is not always what is required.

>> Read more

Author Biography

María del Pilar Ángeles, Universidad Nacional Autónoma de México

Profesor Titular B de tiempo completo, Ingeniera en Computación, Maestra en Ciencias y Ph.D. in Computer Science. Sus áreas de interés y experiencia, por más de 25 años, son principalmente en calidad e integración de datos en ambientes federados, de-duplicación, proveniencia de datos, manejo de datos maestros, minería de datos y un poco debig data y ciencia de datos.

References

Alcorn, P. (2018). Intel Displays 512GB Optane dc Persistent Memory dimms. Tom´s Hardware. https://cutt.ly/fRO6rkD.

Be a Better Dev. (2020, 10 de febrero). sql vs Nosql Explained . YouTube. https://www.youtube.com/watch?v=ruz-vK8IesE.

Borthakur, D. (2007). The Hadoop Distributed File System: Architecture and Design The Apache Software Foundation.

Codd, E. (1985). Is Your dbms Really Relational? ComputerWorld, 9(41).

Cood, E. (1970). A Relational Model of Data for Large Shared Data Banks. Communications of the acm.

Defog Tech. (2019, 17 de abril). Google File System – Paper that inspired Hadoop . YouTube. https://www.youtube.com/watch?v=eRgFNW4QFDcv.

Dilan, G. (2013, 13 de septiembre).. What are the disadvantages of mapreduce? Stack overflow. https://cutt.ly/CRPwTQX.

Great Learning. (2019, 18 de octubre). What is Data Science? . YouTube. https://www.youtube.com/watch?v=Nrfht_c3T7w.

Han, J., Kamber, M. y Pei, H. (2012). Data mining, Concepts and techniques. Morgan Kaufmann.

Harmon, A. L. (1959, 13 de mayo). [Carta a P. Z. Ingerman]. Archive of Computer History Museum. https://cutt.ly/WRPwFQi.

hdfs Architecture. (2021, 25 de octubre). https://cutt.ly/qRPwaNa.

Hillam, J. (2012, 14 de julio). Intricity 101. What is Hadoop? . YouTube. https://www.youtube.com/watch?v=9s-vSeWej1U.

Hodges, R. (2019, 30 de julio). Far more than cloud: Thoughts on the future of database management systems. Altinity. https://cutt.ly/ORPw73p.

html Rules. (2017, 11 de octubre). Transacciones y el test acid en bases de datos . YouTube. https://www.youtube.com/watch?v=SaUai23Z3Tc.

Informática para tu negocio. (2020). Fundamentos de una base de datos columnar. https://cutt.ly/mRPedAa.

Inmon, W. (2002). Building the Data Warehouse. John Wiley Sons.

Intel latam. (2020). Memoria persistente Intel® Optane™. https://cutt.ly/9RPegVb.

Intel latam-optane. (2020). Intel® Optane™ dc Persistent Memory Partner: Accenture. https://cutt.ly/ERPen5Y.

Katsov, I. (2013, 20 de agosto). In-Stream Big Data Processing. Highly Scalable Blog. https://highlyscalable.wordpress.com/2013/08/20/in-stream-big-data-processing/.

Kimball, R. (1996). The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data Warehouses. John Wiley Sons.

Knapp, B. (2018, 30 de octubre). ibm Cloud. What is sap hana? . YouTube. https://www.youtube.com/watch?v=8VXurKENGRE.

LeapFrogBI. (2013, 18 de marzo). Dimensional Modeling: Introduction . YouTube. https://www.youtube.com/watch?v=cwpL-3rkRYQ.

Looker. (2017, 18 de diciembre). Analytical Databases: Differentiators of Database Technologies . Youtube. https://www.youtube.com/watch?v=XdJcvUKiNqc.

Lumen. (2016, 14 de enero). Data Lakes: Hadoop Vs. In-Memory Databases. https://blog.lumen.com/data-lakes-hadoop-vs-in-memory-databases/.

Moore, T. (2011). The Sybase IQ Survival Guide. Lulu.com.

Panicker, M. (2016, 17 de junio). Big Data and Nosql Databases Tutorial (BaSE)- Part 3 . YouTube. https://www.youtube.com/watch?v=pRgUGkDxJ7k.

Parmar, Y. (2017, 7 de enero). Relational databases, Advantages over flat file systems . YouTube. https://www.youtube.com/watch?v=vKkdhOj2Oog.

Plattner, H. (2014). A Course in- Memory Data Management. Springer-Verlag.

Psaltis, A. (2017). Streaming Data: Understanding the real-time pipeline. Manning Publications Co.

Reddy, G. (2017, 18 de enero). Database vs file system . YouTube. https://www.youtube.com/watch?v=y3dc6BJq2LM.

Sadalage, P. y Fowler, M. (2013). Nosql Distilled: A Brief Guide to the Emerging World of Polyglot Persistence. Pearson Education, Inc.

sap Inside Track. (2019, 2 de septiembre). Databases go multimodel . YouTube. https://www.youtube.com/watch?v=LE0BXZV2m6s.

Simply explained. (2020, 8 de diciembre). How do Nosql databases work? Simply Explained! . YouTube. https://www.youtube.com/watch?v=0buKQHokLK8.

Vikramtakka. (2013, 18 de marzo). 3 – etl Tutorial | Extract Transform and Load . YouTube. https://www.youtube.com/watch?v=WZw0OTgCBOY.

Published

2021-11-03

Similar Articles

You may also start an advanced similarity search for this article.