Mathematical and Policy Tools to Reduce Greenhouse Emissions
DOI:
https://doi.org/10.22201/cuaieed.16076079e.2022.23.2.4Keywords:
carbon policies, emission reduction, energy sector, mathematical modelsAbstract
Currently, one of the most important challenges is to develop approaches to address problems such as the growing generation of emissions in the energy sector, due to the negative consequences that this can have on our daily lives. In relation to these problems, it has been proposed to formulate mathematical models to evaluate carbon policies in non-conventional energy generation systems that allow emissions to be reduced. These carbon policies involve taxes and carbon credits to reduce emissions; and some of these unconventional systems include power plants that use indirect combustion with an algae cultivation system and dual-purpose power plants that include the use of biofuels and solar energy. The objective of this work is to show how these mathematical and political tools allow to obtain optimal solutions that include complex relationships between economic, environmental, and social aspects. This facilitates decision making in non-conventional power generation schemes.
References
Afzal, S., Sengupta, D., Sarkar, A., El-Halwagi, M., y Elbashir, N. (2018). Optimization approach to the reduction of CO2 emissions for syngas production involving dry reforming. acs Sustainable Chemistry y Engineering, 6(6), 7532-7544. https://doi.org/10.1021/acssuschemeng.8b00235.
Avi-Yonah, R. S., y Uhlmann, D. M. (2009). Combating Global Climate Change: Why a Carbon Tax is a Better Response to Global Warming than Cap and Trade. Stan. Envtl. LJ, 28(1), 3-50. https://repository.law.umich.edu/articles/52.
Baranzini, A., Goldemberg, J., y Speck, S. (2000). A future for carbon taxes. Ecological economics, 32(3), 395-412. https://doi.org/10.1016/S0921-8009(99)00122-6.
Cristóbal, J., Guillén-Gosálbez, G., Jiménez, L., e Irabien, A. (2012). Optimization of global and local pollution control in electricity production from coal burning. Applied energy, 92, 369-378. https://doi.org/10.1016/j.apenergy.2011.11.028.
Environmental Protection Agency (epa). (s. f.). Sources of Greenhouse Gas Emissions. Consultado el agregar fecha de consulta de https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#t1fn3.
Fang, G., Tian, L., Fu, M., Sun, M., Du, R., y Liu, M. (2017). Investigating carbon tax pilot in yrd urban agglomerations—Analysis of a novel eser system with carbon tax constraints and its application. Applied energy, 194, 635-647. https://doi.org/10.1016/j.apenergy.2016.02.041.
Feijoo, F., y Das, T. K. (2014). Design of pareto optimal CO2 cap-and-trade policies for deregulated electricity networks. Applied Energy, 119, 371-383. https://doi.org/10.1016/j.apenergy.2014.01.019.
Fuentes-Cortés, L. F., Ma, Y., Ponce-Ortega, J. M., Ruiz-Mercado, G., y Zavala, V. M. (2018). Valuation of water and emissions in energy systems. Applied Energy, 210, 518-528. https://doi.org/10.1016/j.apenergy.2016.09.030.
Judd, S., van den Broeke, L. J. P., Shurair, M., Kuti, Y., y Znad, H. (2015). Algal remediation of CO2 and nutrient discharges: A review. Water Research, 87, 356-366. https://doi.org/10.1016/j.watres.2015.08.021.
Kaufman, N., Obeiter, M., y Krause, E. (2016). Putting a price on carbon: Reducing emissions [Issue Brief World Resources Institute]. https://www.wri.org/research/putting-price-carbon-reducing-emissions.
Kossoy, A., Peszko, G., Oppermann, K., Prytz, N., Klein, N., Blok, K., Lam, L., Wong, L., y Borkent, B. (2015). State and Trends of Carbon Pricing 2015. World Bank. http://hdl.handle.net/10986/22630.
Munguía-López, A. del C., Rico-Ramírez, V., y Ponce-Ortega, J. M. (2018). Analysis of Carbon Policies in the Optimal Integration of Power Plants Involving Chemical Looping Combustion with Algal Cultivation Systems. acs Sustainable Chemistry y Engineering, 6(4), 5248-5264. https://doi.org/10.1021/acssuschemeng.7b04903.
Munguía-López, A. del C., González-Bravo, R., y Ponce-Ortega, J. M. (2019). Evaluation of carbon and water policies in the optimization of water distribution networks involving power-desalination plants. Applied Energy, 236, 927-936. https://doi.org/10.1016/j.apenergy.2018.12.053.
nasa. (s. f.). Global Climate Change. Consultado en enero de 2021 de https://climate.nasa.gov/scientific-consensus/.
National Oceanic and Atmospheric Administration (noaa). (s. f.). Trends in Atmospheric Carbon Dioxide. Consultado en enero de 2021 de https://climate.nasa.gov/vital-signs/carbon-dioxide/.
Secretaría de Medio Ambiente y Recursos Naturales (Semarnat) e Instituto Nacional de Ecología y Cambio Climático (inecc). (2012). Quinta comunicación nacional ante la convención marco de las Naciones Unidas sobre el cambio climático. https://unfccc.int/documents/125276.
Vatn, A. (2015). Markets in environmental governance. From theory to practice. Ecological Economics, 117, 225−233. https://doi.org/10.1016/j.ecolecon.2014.07.017.
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.