Traceability of animal-derived products and its role in preventing fraud
Keywords:
animal products, traceability systems, chemical tracers, biomarkers, wildlife legislationAbstract
The commercial trade of animal-derived products is increasing in Mexico and internationally. This conveys the need for a series of verifications and certifications that range from health aspects to the denomination of origin and the protection of vulnerable species. The traceability of products of animal origin assists in the verification of the products offered. Products such as shellfish, honey, animal skin, cheese and meat from various animals are subject to traceability protocols that ensure that the final consumer will receive a safe and authentic product. By effectively tracing an animal product, it is possible to generate reliable information on the origin, of the product, type of production and the species from which the final product was obtained. Such traceability systems are supported by analytical evaluations, either to confirm the origin or authenticity of a product or as a measure to define legal actions in view of possible product adulterations or deliberate mislabeling. Food forensics plays an important role in this context. This article deals with some cases and applications of analytical techniques used to reinforce the traceability and authenticity of products of animal origin.
References
Animal Político. (2019, 12 de marzo). Así te venden atún en vez de marlin en el negocio de pescado . YouTube. https://youtu.be/416MwNiW9w8.
Campmajó, G., y Núñez, O. (2021). Authentication of conventional and organic eggs. En Chromatographic and related separation techniques in food integrity and authenticity. Volume B: Relevant Applications (pp. 187-213). Default Book Series. https://doi.org/10.1142/9781786349972_0007.
Carter, J. F., y Chesson, L. A. (Eds.). (2017). Food forensics: stable isotopes as a guide to authenticity and origin. crc Press.
Crocodile Specialist Group. (2021). Traceability in Crocodylian Conservation and Management. iucn ssc Crocodile Specialist Group. https://cutt.ly/7D58Z4x.
euronews (en español). (2021, 26 de enero). La importancia de la trazabilidad de los productos pesqueros en la ue . YouTube. https://youtu.be/Nf3-Oi5PsHw.
Gamboa-Delgado, J., Molina-Poveda, C., Godínez-Siordia, D. E., Villarreal-Cavazos, D., Ricque-Marie, D., y Cruz-Suárez, L. E. (2014). Application of stable isotope analysis to differentiate shrimp extracted by industrial fishing or produced through aquaculture practices. Canadian Journal of Fisheries and Aquatic Sciences, 71(10), 1520-1528. https://doi.org/10.1139/cjfas-2014-0005.
Kamal, M. A., y Klein, P. (2011). Determination of sugars in honey by liquid chromatography. Saudi journal of biological sciences, 18(1), 17-21. https://doi.org/10.1016/j.sjbs.2010.09.003.
Mania, I., Delgado, A. M., Barone, C., y Parisi, S. (2018). Traceability in the dairy industry in Europe. Springer International Publishing. https://doi.org/10.1007/978-3-030-00446-0.
Moretti, V. M., Turchini, G. M., y Bellagamba, F. (2003). Traceability issues in fishery and aquaculture products. Veterinary Research Communications, 27, 497-505. https://doi.org/10.1023/B:VERC.0000014207.01900.5c.
NSF International. (2018, 19 de diciembre). Webinar: Protegiendo los alimentos del Fraude Alimentario | NSF International . YouTube. https://youtu.be/pOL1Jf4rdgY.
Munguia-Vega, A., Weaver, A. H., Domínguez-Contreras, J. F., y Peckham, H. (2021). Multiple drivers behind mislabeling of fish from artisanal fisheries in La Paz, Mexico. PeerJ, 9, e10750. https://doi.org/10.7717/peerj.10750.
Parlamento Europeo. (2018, 29 de mayo). Resolución del Parlamento Europeo, de 29 de mayo de 2018, sobre la optimización de la cadena de valor en el sector pesquero de la Unión (2017/2119(INI)). Diario Oficial de la Unión Europea. https://cutt.ly/0D56YNZ.
ProfecoTV. (2011, 23 de junio). Miel de abeja [“Revista del Consumidor TV” 28.1] . YouTube. https://youtu.be/9jgQplM-adc.
Reilly, A. (2018). Overview of food fraud in the fisheries sector [fao Fisheries and Aquaculture Circular, (C1165), I-21]. http://www.fao.org/3/I8791EN/i8791en.pdf.
Schingen, M. V., Ziegler, T., Boner, M., Streit, B., Nguyen, T. Q., Crook, V., y Ziegler, S. (2016). Can isotope markers differentiate between wild and captive reptile populations? A case study based on crocodile lizards (Shinisaurus crocodilurus) from Vietnam. Global Ecology and Conservation, 6, 232-241. https://doi.org/10.1016/j.gecco.2016.03.004.
Vasconi, M., Lopez, A., Galimberti, C., Rojas, J. M. M., Redondo, J. M. M., Bellagamba, F., y Moretti, V. M. (2019). Authentication of farmed and wild european eel (Anguilla anguilla) by fatty acid profile and carbon and nitrogen isotopic analyses. Food Control, 102, 112-121. https://doi.org/10.1021/jf0734267.
Vetrova, O. V., Kalashnikova, D. A., Melkov, V. N., y Simonova, G. V. (2017). Detection of honey adulterations with sugar syrups by stable isotope mass spectrometry. Journal of Analytical Chemistry, 72(7), 756-760. https://doi.org/10.1134/S1061934817070152.
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.