Multimodal education: a look at the Bachelor of Arts Education at the University of Veracruz

Authors

Keywords:

educación multimodal, multimodalidad, multimodal, sistema de educación multimodal, licenciatura en educación artística, Universidad Veracruzana, COVID19

Abstract

This article aims to outline and understand the basic concepts, origins, and evolution of multimodal education. First, the components of multimodal education are analyzed, followed by an explanation of the historical events that explain its origins. Furthermore, the origins of the bachelor”s degree in Virtual Modality Art Education at the Faculty of Theater of the University of Veracruz are investigated.

Author Biography

Youyi Tajae1 Mayora Eng, Instituto Rosario Castellanos

Youyi Mayora Eng nació en 1986 en Veracruz, México. Académico, investigador, y escritor de tiempo completo, es candidato a Doctor en Ambientes y Sistemas Educativos Multimodales por el Instituto Rosario Castellanos del Gobierno de la Ciudad de México; Licenciado en Educación Artística, Licenciado en Derecho, y Maestro en Ciencias de la Educación, egresado de la Facultad de Teatro de la Universidad Veracruzana, de la Universidad Humanitas, y de la Escuela Nacional de Danza Folklórica del Instituto Nacional de Bellas Artes y Literatura. Es escritor de novelas como: “Secreto 1977: El enigma del poder mundial”, en la cual aborda los misteriosos y complejos orígenes del poder político, corporativo y económico mundial. Actualmente, es catederático en la Escuela de Artes de la Universidad Anáhuac Campus Norte. Sus líneas de investigación son: Educación artística y sistemas multimodales; Historia de la Danza en México.

References

Ahmed, N., Jahan, R., Nissapatorn, V., Wilairatana, P., y Rahmatullah, M. (2022). Plant lectins as prospective antiviral biomolecules in the search for covid-19 eradication strategies. Biomedicine; Pharmacotherapy, 146, 112507. https://doi.org/10.1016/j.biopha.2021.112507

Balciunaite-Murziené, G., y Dzikaras, M. (2021). Wheat Germ Agglutinin — From Toxicity to Biomedical Applications. Applied sciences, 11(2), 884. https://doi.org/10.3390/app11020884

Cohen, M., y Varki, A. (2014). Modulation of Glycan Recognition by Clustered Saccharide Patches. En K. W. Jeon (Ed.), International review of cell and molecular biology (vol. 308, pp. 75-125). Elsevier. https://doi.org/10.1016/B978-0-12-800097-7.00003-8

Durand, G., y Seta, N. (2000). Protein glycosylation and diseases: blood and urinary oligosaccharides as markers for diagnosis and therapeutic monitoring. Clin Chem., 46(6), 795-805. https://doi.org/10.1093/clinchem/46.6.795

Espino-Solis, G. P. (2015). Brief review – Lectins. Revista Vitae, 22(1), 9-11. https://doi.org/10.17533/udea.vitae.v22n1a01

Gabius, H. (2018). The sugar code: Why glycans are so important. Biosystems, 164, 102-111. https://doi.org/10.1016/j.biosystems.2017.07.003

Gabius, H., y Jürgen, R. (2017). An introduction to the sugar code. Histochem Cell Biol., 147(2), 111-117. https://doi.org/10.1007/s00418-016-1521-9

Ghazarian, H., Idoni, B., y Oppenheimer, S. B. (2011). A glycobiology review: Carbohydrates, lectins and implications in cancer therapeutics. Acta Histochemica, 113(3), 236-247. https://doi.org/10.1016/j.acthis.2010.02.004

Kumar, K., Reddy, G., Reddy, B., Shekar, P., Sumanthi, J., y Chandra, K. (2012). Biological role of lectins: A review. Journal of Orofacial Sciences, 4(1), 20-25. https://doi.org/10.4103/0975-8844.99883

Kuo, J. C.-H., Gandhi, J. G., Zia, R. N., y Paszek, M. J. (2018). Physical biology of the cancer cell glycocalyx. Nature Physics, 14(7), 658-669. https://doi.org/10.1038/s41567-018-0186-9

Leyva, E., Medrano-Cerano, J. L., Cano-Sánchez, P., López-González, I., Gómez-Velasco, H., del Río-Portilla, F. y García-Hernández, E. (2019). Bacterial expression, purification and biophysical characterization of wheat germ agglutinin and its four hevein-like domains. Biopolymers, 110(1), e23242. https://doi.org/10.1002/bip.23242

Munkley, J., y Elliott, D. J. (2016). Hallmarks of glycosylation in cancer. Oncotarget, 7(23), 35478-35489. https://doi.org/10.18632/oncotarget.8155

Nelson, D. (2005). Lehninger principles of biochemistry (4.a ed.). W.H. Freeman. https://search.library.wisc.edu/catalog/999964334502121

Nelson, D. L. y Cox, M. M. (2018). Lehninger principles of biochemistry (7.a ed.). W.H. Freeman, 2018. https://search.library.wisc.edu/catalog/999964334502121

Portillo-Téllez, M. D. C., Bello, M., Salcedo, G., Gutiérrez, G., Gómez-Vidales, V. y García-Hernández, E. (2011). Folding and homodimerization of wheat germ agglutinin. Biophys J., 101(6), 1423–1431. https://doi.org/10.1016/j.bpj.2011.07.037

Sharon, N., y Lis, H. (2004). History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology, 14(11), 53R-62R. https://doi.org/10.1093/glycob/cwh122

Solís, D., Bovin, N. V, Davis, A. P., Jiménez-barbero, J., Romero, A., Roy, R., Smetana, K., y Gabius, H. (2015). A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code. Biochimica et Biophysica Acta (bba) – General Subjects, 1850(1), 186-235. https://doi.org/10.1016/j.bbagen.2014.03.016

Sun, W. W., Krysto, E. S., Leo-macias, A., Cui, R., Sesso, A., Weigert, R., Ebrahim, S., y Kachar, B. (2020). Nanoarchitecture and dynamics of the mouse enteric glycocalyx examined by freeze-etching electron tomography and intravital microscopy. Commun Biol, 3, 5. https://doi.org/10.1038/s42003-019-0735-5

Thompson, A. J., Cao, L., Ma, Y., Mcbride, R., Iii, J. R. Y., Paulson, J. C., Thompson, A. J., Cao, L., Ma, Y., Wang, X., Diedrich, J. K., Kikuchi, C., y Willis, S. (2020). Article Human Influenza Virus Hemagglutinins Contain Conserved Oligomannose N-Linked Glycans Allowing Potent Neutralization by Lectins. Cell Host and Microbe, 27(5), 725-735. https://doi.org/10.1016/j.chom.2020.03.009

Published

2023-06-28