Probability and statistics in decision making
Keywords:
Uncertainty, probability, statistics, decision makingAbstract
Probability and statistics are areas of study that originated in the 16th century and have developed throughout history. Probability refers to the degree of certainty that an event will occur, while statistics is responsible for collecting and analyzing data to generate explanations and predictions. These disciplines are applied in different fields. Some examples of applications of probability and statistics are predicting the weather, knowing which soccer team will win the World Cup or the behavior of investments in the stock market. Furthermore, given the increase in information, more complex systems have been developed to diagnose diseases, assign a price to insurance policies, or build autonomous cars. In this article we talk about these topics in greater depth.
References
Anderson, D., Sweeney, D., y Williams, T. (2008). Statistics for Business and Economics (10a. ed.). Thomson/Southwestern.
Ghahramani, Z. (2015) Probabilistic machine learning and artificial intelligence. Nature 521, 452–459. https://doi.org/10.1038/nature14541.
Gómez-Romero, J., García, J., y Molina, J. M. (2014). Modelos de Representación de Imprecisión e Incertidumbre en Fusión de Alto Nivel. xvii Congreso Español Sobre Tecnologías y Lógica Fuzzy (ESTYLF), Zaragoza, España. https://bisite.usal.es/archivos/2014_estylf.pdf.
Gutiérrez, E., y Vladimirovna, O. (2014). Probabilidad y estadística. Aplicaciones a la ingeniería y las ciencias (1ª. ed.). Grupo Editorial Patria.
Hernández, J., Ramirez Ma. J., y Ferri C. (2004). Introducción a la minería de datos. Pearson Educación.
Instituto Nacional de Estadística y Geografía (inegi). (2023, 6 de octubre). Esperanza de vida al nacimiento por entidad federativa según sexo, serie anual de 2010 a 2023. http://tinyurl.com/23fdccr4.
Naciones Unidas. (2023, 9 de octubre). Día Mundial de la Estadística. https://www.un.org/es/observances/statistics-day.
Nasteski, V. (2017). An overview of the supervised machine learning methods. Horizons, 4, 51-62. https://doi.org/10.20544/HORIZONS.B.04.1.17.P05.
Restrepo B., L. F., y González L., J. (2003, marzo). La Historia de la Probabilidad. Revista Colombiana de Ciencias Pecuarias, 16(1), 83-87. https://www.redalyc.org/pdf/2950/295026121011.pdf.
Stylianides N., y Kontou E. (2020). Bayes Theorem and its Recent Applications. Mathematics Research Journal, 2. https://journals.le.ac.uk/ojs1/index.php/lumj/article/view/3488/3130
Valero-Matas, J. A., y De la Barrera, A. (2020). The Autonomous Car: A better future? Sociología y tecnociencia, 10(1), 136-158. https://revistas.uva.es/index.php/sociotecno/article/view/4225
Published
Issue
Section
License
Copyright (c) 2024 Revista Digital Universitaria

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.