Quasicrystals: from parallel universes to multidimensional shadows
DOI:
https://doi.org/10.22201/ceide.16076079e.2024.25.3.5Keywords:
quasicrystals, isomorphism, state of matter, thermodynamics, thermal conductivityAbstract
This text lies at the boundary of materials physics, geometry and topology. We begin by exposing the topological concept of locally isomorphic space, through a thought experiment, in which we are transported to a parallel universe. Next, to talk about quasicrystals, we review the different states of matter and their main properties. Afterwards, we present the story of the discovery of quasicrystals to continue the discussion on the mathematics that describes them, especially the interpretation of quasicrystals as geometric projections of periodic crystals of higher dimensions (that is, spaces where the coordinates require more than three values). We relate the interpretation in high dimensions with the thermodynamic perturbations that describe thermal conductivity and with this we return to the concept of locally isomorphic space and that an initial parallel universe.
→ Leer más
References
Berger, R. (1966). The undecidability of the domino problem. American Mathematical Society. https://tinyurl.com/ymkjxr25.
Chaudhari, P., Spaepen, F., y Steinhardt, P.J. (1983). Defects and atomic transport in metallic glasses. En H. Beck y HJ. Güntherodt (Eds.), Glassy Metal ii (pp. 127-168). Springer. https://link.springer.com/content/pdf/10.1007/3540127879_27.pdf .
de Boissieu, M. (2019). Ted Janssen and aperiodic crystals. Acta Crystallographica Section A, 75(2), 273-280. https://doi.org/10.1107/S2053273318016765.
de Bruijn, N.G. (1981). Algebraic theory of Penrose’s non-periodic tilings of the plane, II. Indagationes Mathematicae (Proceedings), 84(1), 53-66. https://pure.tue.nl/ws/portalfiles/portal/4344195/597566.pdf.
Freiman, Y. A., y Jodl, H. J. (2004). Solid oxygen. Physics Reports, 401(1-4), 1-228. https://doi.org/10.1016/j.physrep.2004.06.002.
Luger, P. (2014). Modern X-Ray Analysis on Single Crystals: A Practical Guide. (2.a ed.). De Gruyter. https://doi.org/10.1515/9783110308280.
Gardner, M. (1977). Mathematical games: Extraordinary nonperiodic tiling that enriches the theory of tiles. Scientific American, 236, 110-121. https://doi.org/10.1038/scientificamerican0177-110.
Hansen, T. C. (2021). The everlasting hunt for new ice phases. Nature Communications, 12, 3161. https://doi.org/10.1038/s41467-021-23403-6.
Levine, D., y Steinhardt, P. J. (1984). Quasicrystals: A New Class of Ordered Structures. Physical Review Letters, 53(26), 2477-2480. https://doi.org/10.1103/PhysRevLett.53.2477.
Levine, D. (1986). Local isomorphism, Landau theory, and matching rules in quasicrystals. Le Journal de Physique Colloques, 47(C3), 125-134. https://doi.org/10.1051/jphyscol:1986312.
O’Callaghan, J. (2023). Scientists made a new kind of ice that might exist on distant moons. Nature, 614, 396-397. https://doi.org/10.1038/d41586-023-00293-w.
Pathria, R. K., y Beale, P. D. (2011) Statistical Mechanics. (3a ed.). Elsevier.
Shechtman, D., Blech, I., Gratias, D., y Cahn, J. W. (1984). Metallic Phase with Long-Range Orientational Order and No Translational Symmetry. Physical Review Letters, 53(20), 1951-1953. https://doi.org/10.1103/PhysRevLett.53.1951.
Steinhardt, P. J., Nelson, D. R., y Ronchetti, M. (1981). Icosahedral Bond Orientational Order in Supercooled Liquids. Physical Review Letters, 47(18), 1297-1300. https://doi.org/10.1103/PhysRevLett.47.1297.
Steinhardt, P. J., Nelson, D. R., y Ronchetti, M. (1983). Bond-orientational order in liquids and glasses. Physical Review B, 28(2), 784-805. https://doi.org/10.1103/PhysRevB.28.784.
Wang, H. (1965). Games, Logic and Computers. Scientific American, 213(5), 98-107. http://www.jstor.org/stable/24931186.
Published
Issue
Section
License
Copyright (c) 2024 Revista Digital Universitaria

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.