Carbohydrates: defenders or allies of viruses?

Authors

DOI:

https://doi.org/10.22201/ceide.16076079e.2025.26.2.6

Keywords:

glycans, viral infections, carbohydrates, Glycovirology, sars-CoV-2, viruses

Abstract

Viruses are biologically diverse, and some have developed the ability to effectively infect humans by evading the immune system using biomolecules such as glycans. These carbohydrates play a key role in viral infections, facilitating the adhesion and penetration of viruses like sars-CoV-2 into human cells. However, glycans can also act as a barrier against infections by interfering with the binding and entry of viruses, serving as receptors for the immune system, or being modified to block infection. The interaction between glycans and viruses is complex and crucial for understanding viral infections, highlighting the importance of glycans in the fight against them.

→ Leer más

Author Biographies

Brenda Ingrid Velázquez Dodge, Universidad Autónoma del Estado de Morelos, Instituto de Investigación en Ciencias Básicas y Aplicadas

Master of Science

Ph D Student in Science (Cell and Molecular Biology)

Cell Dynamics Research Center

Roberta Salinas Marín, Universidad Autónoma del Estado de Morelos, Instituto de Investigación en Ciencias Básicas y Aplicadas

Ph D in Sciences (Human Glycobiology) Associate Research Professor C Human Glycobiology and Molecular Diagnosis Laboratory Cell Dynamics Research Center
Morelos State Autonomous University    

References

Bamford, D. H., Grimes, J. M., y Stuart, D. I. (2005). What does structure tell us about virus evolution? Current Opinion in Structural Biology, 15(6), 655–663. https://doi.org/10.1016/J.SBI.2005.10.012.

Bashiri, S., Koirala, P., Toth, I., y Skwarczynski, M. (2020). Carbohydrate immune adjuvants in subunit vaccines. Pharmaceutics, 12(10), 1–33. MDPI AG. https://doi.org/10.3390/pharmaceutics12100965.

Dugan, A. E., Peiffer, A. L., y Kiessling, L. L. (2022). Advances in glycoscience to understand viral infection and colonization. Nature Methods, 19(4), 384–387. Nature Research. https://doi.org/10.1038/s41592-022-01451-0.

Heldwein, E. E., Lou, H., Bender, F. C., Cohen, G. H., Eisenberg, R. J., y Harrison, S. C. (2006). Crystal structure of glycoprotein B from herpes simplex virus 1. Science, 313(5784), 217–220. https://doi.org/10.1126/SCIENCE.1126548.

Holmes, E. C. (2011). What does virus evolution tell us about virus origins? Journal of Virology, 85(11), 5247–5251. https://doi.org/10.1128/JVI.02203-10/ASSET/6005E6F4-F7B7-46B3-90C4-2CCCF8711EA4/ASSETS/GRAPHIC/ZJV9990946160001.JPEG.

Li, Y., Liu, D., Wang, Y., Su, W., Liu, G., y Dong, W. (2021). The importance of glycans of viral and host proteins in enveloped virus infection. Frontiers in Immunology, 12, 638573. Frontiers Media S.A. https://doi.org/10.3389/fimmu.2021.638573.

Merchlinsky, M., Albright, A., Olson, V., Schiltz, H., Merkeley, T., Hughes, C., Petersen, B., y Challberg, M.(2019). The development and approval of tecoviromat (TPOXX®), the first antiviral against smallpox. Antiviral Research, 168, 168–174. Elsevier B.V. https://doi.org/10.1016/j.antiviral.2019.06.005.

Minaya, M. A., Korom, M., Wang, H., Belshe, R. B., y Morrison, L. A. (2017). The Herpevac trial for women: Sequence analysis of glycoproteins from viruses obtained from infected subjects. PLOS ONE, 12(4), e0176687. https://doi.org/10.1371/JOURNAL.PONE.0176687.

Sevvana, M., Klose, T., y Rossmann, M. G. (2020). Principles of virus structure. In Encyclopedia of Virology: Volume 1-5 (4th ed., pp. 257–277). https://doi.org/10.1016/B978-0-12-814515-9.00033-3.

Varki, A., Cummings, R. D., Esko, J. D., Stanley, P., Hart, G. W., Aebi, M., Mohnen, D., Kinoshita, T., Packer, N. H., Prestegard, J. H., Schnaar, R. L., y Seeberger, P. H. (2022). Essentials of Glycobiology. https://doi.org/10.1101/9781621824213.

Zheng, L., Wang, K., Chen, M., Qin, F., Yan, C., y Zhang, X.-E. (2022). Characterization and function

Published

2025-03-12