Underground Smoke Signals: The Secret Language of Plants and Microbes
DOI:
https://doi.org/10.22201/ceide.16076079e.2026.27.1.9Keywords:
plant-microbe communication, rhizosphere, soil microbiology, sustainable agriculture, plant chemical signalingAbstract
A secret social network pulses beneath our feet. Long before the internet, plants and microbes were already exchanging complex messages to ensure their survival. This chemical dialogue unfolds in the rhizosphere, where bacteria and fungi act as strategic allies or voracious enemies. Through molecular smoke signals, roots coordinate nitrogen uptake or sound the alarm against herbivorous insects. Microbes such as Bacillus and Trichoderma not only boost plant growth but also recruit natural bodyguards—like parasitoid wasps—to neutralize pests. Understanding these interactions is key to ecosystem health and the future of sustainable agriculture. They are not merely tiny beings; they are masters of underground diplomacy in an invisible network we have only just begun to decode.
References
Akiyama, K., Matsuzaki, K., y Hayashi, H. (2005, 9 de junio). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435, 824-827. https://doi.org/10.1038/nature03608
Contreras-Cornejo, H. A., del-Val, E., Macías-Rodríguez, L., Alarcón, A., González-Esquivel, C. E., y Larsen, J. (2018a, julio). Trichoderma atroviride, a maize root associated fungus, increases the parasitism rate of the fall armyworm Spodoptera frugiperda by its natural enemy Campoletis sonorensis. Soil Biology and Biochemistry, 122, 196-202. http://dx.doi.org/10.1016/j.soilbio.2018.04.013
Contreras-Cornejo, H. A., Macías-Rodríguez, L., del-Val, E., y Larsen, J. (2018b, marzo). The root endophytic fungus Trichoderma atroviride induces foliar herbivory resistance in maize plants. Applied Soil Ecology, 124, 45-53. https://doi.org/10.1016/j.apsoil.2017.10.004
Contreras-Cornejo, H. A., Macías-Rodríguez, L., Real-Santillán, R. O., López-Carmona, D., García-Gómez, G., Galicia-Gallardo, A. P., Alfaro-Cuevas, R., González-Esquivel, C. E., Najera-Rincón, M. B., Adame-Garnica, S. A., Rebollar-Alviter, A., Álvaréz-Navarrete, M., y Larsen, J. (2021, 13 de abril). In a belowground multitrophic interaction, Trichoderma harzianum induces maize root herbivore tolerance against Phyllophaga vetula. Pest Management Science, 77(9), 3952-3963. http://dx.doi.org/10.1002/ps.6415
D´Alessandro, M., Erb, M., Ton, J., Brandenburg, A., Karlen, D., Zopfi, J., y Turlings, T. C. J. (2014, abril). Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant, Cell and Environment, 37(4), 813-826. https://doi.org/10.1111/pce.12220
Garnica-Vergara, A., Barrera-Ortiz, S., Muñoz-Parra, E., Raya-Gonzalez, J., Méndez-Bravo, A., Macías-Rodríguez, L., Ruiz-Herrera, L. F., y López-Bucio, J. (2016, marzo). The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytologist, 209(4), 1496-1512. https://doi.org/10.1111/nph.13725
Macías-Rodríguez, L., Contreras-Cornejo, H. A., Adame-Garnica, S. G., del-Val, E., y Larsen, J. (2020). The interactions of Trichoderma at multiple trophic levels: Inter-kingdom communication. Microbiological Research, 240, 126552. https://doi.org/10.1016/j.micres.2020.126552
Macías-Rodríguez, L., Guzmán-Gómez, A., García-Juárez, P., y Contreras-Cornejo, H. A. (2018, 14 de julio). Trichoderma atroviride promotes tomato development and alters the root exudation of carbohydrates, which stimulates fungal growth and the biocontrol of the phytopathogen Phytophthora cinnamomi in a tripartite interaction system. fems Microbiology Ecology, 94(9), fiy137. https://doi.org/10.1093/femsec/fiy137
Piechulla, B., y Degenhardt, J. (2014, abril). The emerging importance of microbial volatile organic compounds. Plant Cell and Environment, 37(4), 811-812. https://doi.org/10.1111/pce.12254
Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Kloepper, J. W., y Paré, P. W. (2004, marzo). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134(3), 1017-1026. https://doi.org/10.1104/pp.103.026583
Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Wei, H.-X., Paré, P. W., y Kloepper, J. W. (2003, 8 de abril). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 100(8), 4927-4932. https://doi.org/10.1073/pnas.0730845100
Walker, T. S., Bais, H. P., Grotewold, E., y Vivanco, J. M. (2003, 1 de mayo). Root exudation and rhizosphere biology. Plant Physiology, 132(1), 44-51. https://doi.org/10.1104/pp.102.019661
Published
Issue
Section
License
Copyright (c) 2026 Revista Digital Universitaria

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.



