Technologies for reading comprehension: Current status and new developments
DOI:
https://doi.org/10.22201/cuaieed.16076079e.2020.21.6.7Keywords:
virtual learning environment, text comprehension, tutoring systems, educational technology, individualized instructionAbstract
This article presents international evidence on the impact of technology on reading performance, and it describes the main features of some technologies that help learn and train comprehension skills. The characteristics of intelligent tutoring systems are detailed below. This new generation of programs have the ability to collect system log data that enables the design and construction of a more accurate student model, and, in many cases, uses natural language techniques, which help to generate comments that are better adapted to the needs of each student.
References
Baker, R., D’Mello, S, Rodrigo, M. y Graesser, A. (2010). Better to be frustrated than bored: The incidence, persistence, and impact of learners’ cognitive-affective states during interactions with three different computer-based learning environments. International Journal of Human-Computer Studies, 68,(4) 223–241. doi: https://doi.org/10.1016/j.ijhcs.2009.12.003.
Crossley, S. y McNamara, D. (2016). Adaptive educational technologies for literacy instruction. Taylor Francis.
Ericsson, K. (2008). Deliberate practice and acquisition of expert performance: A general overview. Academic Emergency Medicine, 15(11), 988-994. doi: https://doi.org/10.1111/j.1553-2712.2008.00227.x.
Foltz, P., Laham, D., y Landauer, T. (1999). Automated essay scoring: Applications to educational technology. En B. Collis y R. Oliver (Eds.), Proceedings of EDMedia ‘99 (pp. 939-944).
Gee, J. (2005). Why video games are good for your soul: Pleasure and learning. Common Ground Press.
Graesser, A., Mcnamara, D. y VanLehn, K. (2005). Scaffolding deep comprehension strategies through point query, AutoTutor, and istart. Educational Psychologist, 40(4), 225–234. doi: https://doi.org/10.1207/s15326985ep4004_4.
Gutiérrez, F. y Atkinson, J. (2011). Adaptive feedback selection for intelligent tutoring systems. Expert Systems with Applications, 38(5), 6146-6152. doi: https://doi.org/10.1016/j.eswa.2010.11.058.
Gutiérrez, F., Dou, D., Fickas, S. y Griffiths G. (2012). Providing grades and feedback for student summaries by ontology-based information extraction. Proceedings of the 21st ACM International Conference on Information and Knowledge Management, 1722-1726. doi: https://www.doi.org/10.1145/2396761.2398505.
Jackson, G. y McNamara, D. (2013). Motivation and performance in a game-based intelligent tutoring system. Journal of Educational Psychology, 105(4), 1036–1049. doi: https://doi.org/10.1037/a0032580.
Jackson, L. A., von Eye, A., Biocca, F. A., Barbatsis, G., Zhao, Y. y Fitzgerald, H. E. (2006). Does home internet use influence the academic performance of low-income children? Developmental Psychology, 42(3), 429-435. doi: https://doi.org/10.1037/0012-1649.42.3.429.
Johnson, A., Jacovina, M., Rusell, D. y Soto, C. M. (2016). Challenges and solutions when using technologies in the classroom. En D. S. McNamara y S. A. Crossley (Eds.), Adaptive educational technologies for literacy instruction (pp. 13-29). Taylor Francis, Routledge.
McCarthy, K. S., Soto, C., de Blume, A. P. G., Palma, D., González, J., y McNamara, D. Improving reading comprehension in Spanish using istart-e: A pilot study. International Journal of Computer-Assisted Language Learning and Teaching (ijcallt; issn: 2155-7101), Special Issue: WorldCALL 2018: CALLing all the CALLers Worldwide. https://www.researchgate.net/profile/Antonio_Gutierrez_De_Blume/publication/340952008_Improving_Reading_Comprehension_in_Spanish_using_iSTART-E_A_Pilot_Study/links/5ea7117e299bf1125612f51b/Improving-Reading-Comprehension-in-Spanish-using-iSTART-E-A-Pilot-.
McCarthy, K. S., Soto, C., Malbrán, C., Fonseca, L., Simian, M., y McNamara, D. S. (2018). istart-e: Reading comprehension strategy training for Spanish speakers. En C. P. Rosé, R. Martinez-Maldonado, U. Hoppe, R. Luckin, M. Mavrikis, K. Porayska-Pomsta, B. McLaren y B. D. Boulay (Eds.), Artificial Intelligence in Education [19th International Conference, aied 2018, London, uk, June 27–30, 2018, Proceedings, Part ii], pp. 215-219. Springer.
McNamara, D., O’Reilly, T., Rowe, M., Boonthum, C. y Levinstein, I.B. (2007). istart: A web-based tutor that teaches self-explanation and metacognitive reading strategies. En D.S. McNamara (Ed.), Reading comprehension strategies: Theories, interventions, and technologies (pp. 397-420). Erlbaum.
McNamara, D., Boonthum, C., Levinstein, I. y Millis, K. (2007). Evaluating self-explanations in istart: Comparing word-based and lsa algorithms. En T. K. Landauer, D. S. McNamara, S. Dennis, y W. Kintsch (Eds.), Handbook of Latent Semantic Analysis (pp. 227–241). Erlbaum.
oecd. (2010). pisa 2009 Results: Learning to Learn–Student Engagement, Strategies and Practices (Volume iii). doi: http://dx.doi.org/10.1787/9789264083943-en.
oecd. (2014). pisa 2012 Results: What Students Know and Can Do – Student Performance in Mathematics, Reading and Science (Volume i, Revised edition, February 2014), pisa, oecd Publishing. doi: http://dx.doi.org/10.1787/9789264201118-en.
Palma, D., Soto, C., Veliz, M., Riffo, B., y Gutiérrez, A. (2019, agosto). A data-driven methodology to assess text complexity based on syntactic and semantic measurements. International Conference on Human Interaction and Emerging Technologies, 509-515 Springer, Cham.
Palma, D., Soto, C., Veliz, M., Riffo, B., Gutiérrez, A. (2020). A Data-Driven Methodology to Assess Text Complexity Based on Syntactic and Semantic Measurements. En Ahram T., Taiar R., Colson S., Choplin A. (Eds.), Human Interaction and Emerging Technologies. ihiet 2019. Advances in Intelligent Systems and Computing (Vol. 1018). Springer, Cham. doi: https://doi.org/10.1007/978-3-030-25629-6_79.
Rodríguez, F. y Soto, C. (2020). YaLeo: programa para mejorar el desempeño lector en estudiantes con Necesidades Educativas Especiales [anid, Proyecto fondef VIU18E0088].
San Martín, E., Jara, I., Preiss, D., Claro, M. y Fariña, P. (2012). ¿Cuán relevante es el aporte de diversos usos de tic para explicar el rendimiento lector en pisa? Modelando el aporte neto tic en Chile, Uruguay, España, Portugal y Suecia [informe de investigación Proyecto fonide N°: FE11124 mineduc, Chile].
Snow, E., Jacovina, M., Jackson, G.T., y McNamara, D. (2016). istart-2. A reading comprehension and strategy instruction tutor. En D. S. McNamara y S. A. Crossley (Eds.), Adaptive educational technologies for literacy instruction (pp. 104-121). Taylor Francis, Routledge.
Soto, C., de Blume, A. P. G., Rodríguez, M. F., Asún, R., Figueroa, M., y Serrano, M. (2019). Impact of bridging strategy and feeling of knowing judgments on reading comprehension using comprende: An educational technology. TechTrends, 63(5), 570-582. doi: http://dx.doi.org/10.1007/s11528-019-00383-5.
VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in Education, 16(3), 227-265.
VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational Psychologist, 46(4), 197–221. doi: https://doi.org/10.1080/00461520.2011.611369.
Vidal-Abarca, E., Gilabert R., Ferrer, A., Avila V., Martínez, T., Maña, A., Llorens A., Gil, L., Cerdán R., Ramos, L. y Serrano, M. (2014). tuinlec, un tutor inteligente para mejorar la competencia lectora. Journal for the Study of Education and Development, Infancia y Aprendizaje, 37(1), 25–56.
Published
Issue
Section
License
Copyright (c) 2020 Revista Digital Universitaria

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.