Ciencias “ómicas”, ¿cómo ayudan a las ciencias de la salud?
DOI:
https://doi.org/10.22201/codeic.16076079e.2017.v18n7.a3Palabras clave:
ácido desoxirribonucleico (ADN), ácido ribonucleico (ARN), proteínas, metabolitos, ciencias “ómicas”Resumen
Las “ómicas” son las ciencias que permiten estudiar un gran número de moléculas, implicadas en el funcionamiento de un organismo. En las últimas décadas, el avance tecnológico ha permitido el estudio a gran escala de muchos genes, proteínas y metabolitos, permitiendo la creación de la genómica, proteómica, metabolómica, entre otras. Cada una de estas áreas ha ayudado a un mejor entendimiento de la causa de ciertas enfermedades. Además, la aplicación del conocimiento sobre las “ómicas” a la clínica podrá utilizarse para hacer un diagnóstico más temprano o para prevenir el desarrollo de una enfermedad. Así, la medicina se podrá convertir en medicina personalizada, donde cada individuo llevará un tratamiento para una determinada enfermedad acorde a su información genética y a su medio ambiente. En este artículo se define a cada una de las “ómicas”, la metodología que se usa para su análisis y un ejemplo de su aplicación clínica.
Citas
Avery, O. T., MacLeod, C. M., y McCarty, M. (1944). Studies on the chemical nature of the substance inducingtransformation of pneumococcal types. Journal of Experimental Medicine, 79(2), 137–158. DOI: <http://doi.org/10.1084/jem.79.2.137>.
Bargalló-Rocha, J. E. et al. (2015). Cost-Effectiveness of the 21-Gene Breast Cancer Assay in Mexico. Advances in Therapy, 32(3), 239–253. DOI: <http://doi.org/10.1007/s12325-015-0190-8>.
Begum, F., Ghosh, D., Tseng, G. C. y Feingold, E. (2012). Comprehensive literature review and statistical considerations for GWAS meta-analysis. Nucleic Acids Research, 40(9), 3777–3784. DOI: <http://doi.org/10.1093/nar/gkr1255>.
Burdge, G. C. y Lillycrop, K. A. (2014). Environment-physiology, diet quality and energy balance: the influence of early life nutrition on future energy balance. Physiology y Behavior. DOI: <http://doi.org/10.1016/j.physbeh.2013.12.007>.
Chevalier, S., Marliss, Morais, Lamarche y Gougeon (2005). Whole-body protein anabolic response is resistant to the action of insulin in obese women. American Journal of Clinical Nutrition, 82(2), 355–365. DOI: <https://www.ncbi.nlm.nih.gov/pubmed>.
Corvol, H. et al. (2016). Translating the genetics of cystic fibrosis to personalized medicine. Translational Research. DOI: <http://doi.org/10.1016/j.trsl.2015.04.008>.
Desai, M., Jellyman, J. K. y Ross, M. G. (2015). Epigenomics, gestational programming and risk of metabolic syndrome. International Journal of Obesity. DOI: <http://doi.org/10.1038/ijo.2015.13>.
Fiehn, O., Timothy Garvey, W., Newman, J. W., Lok, K. H., Hoppel, C. L. y Adams, S. H. (2010). Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS ONE, 5(12), 1–10. DOI: <http://doi.org/10.1371/journal.pone.0015234>.
Gutierrez Aguilar, R., Kim, D. H., Woods, S. C. y Seeley, R. J. (2011). Expression of New Loci Associated With Obesity in Diet-Induced Obese Rats: From Genetics to Physiology. Obesity (Silver Spring). DOI: <https://doi.org/10.1038/oby.2011.236>.
Han, Y. y He, X. (2016). Integrating epigenomics into the understanding of biomedical insight. Bioinformatics and Biology Insights. Recuperado de: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5138066/>.
Harrow, J. et al. (2012). GENCODE: The reference human genome annotation for the ENCODE project. Genome Research, 22(9), 1760–1774. DOI: <http://doi.org/10.1101/gr.135350.111>.
Hershey, A. D. y Chase, M. (1952). Independent functions of viral protein and nucleic acid in growth of bacteriophage. Journal of General Physiology, 36(1), 39–56. Reciperado de: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2147348/>.
International Human Genome Sequencing Consortium. (2004). International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature, 431, 931–945. Recuperado de: <http://www.nature.com/nature/journal/v431/n7011/full/nature03001.html?foxtrotcallback=true>.
Kosteria, I. et al. (2017). The use of proteomics in assisted reproduction. In Vivo, 31(3), 267–283. DOI: <http://doi.org/10.21873/invivo.11056>.
LaFramboise, T. (2009). Single nucleotide polymorphism arrays: A decade of biological, computational and technological advances. Nucleic Acids Research. DOI: <http://doi.org/10.1093/nar/gkp552>.
Manolio, T. A. (2010). Genomewide Association Studies and Assessment of the Risk of Disease. The New England Journal of Medicine, 363(2), 166–176. DOI: <http://doi.org/10.1056/NEJMra0905980>.
Merched, A. J. et al. (2008). Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. The FASEB Journal, 22(10), 3595–3606. DOI: <http://doi.org/10.1096/fj.08-112201>.
Milagro, F. I. et al. (2009). High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats. Journal of Physiology and Biochemistry, 65(1), 1-9. Rrecuperado de: <http://www.ncbi.nlm.nih.gov/pubmed/19588726>.
Mishra, N. (2010). Introduction to Proteomics: Principles and Applications. Introduction to Proteomics: Principles and Applications. DOI: <http://doi.org/10.1002/9780470603871>.
Moore, S. C. et al. (2014). Human metabolic correlates of body mass index. Metabolomics, 10(2), 259–269. DOI: <http://doi.org/10.1007/s11306-013-0574-1>.
Moran-Ramos, S. et al. (2017). An amino acid signature associated with obesity predicts 2-year risk of hypertriglyceridemia in school-age children. Scientific Reports. Recuperado de: <https://www.nature.com/articles/s41598-017-05765-4>.
Motta Murguia, L. y Saruwatari-Zavala, G. (2016). Mexican Regulation of Biobanks. The Journal of Law, Medicine y Ethics : A Journal of the American Society of Law, Medicine y Ethics, 44(1), 58–67. Recuperado de: <https://www.ncbi.nlm.nih.gov/pubmed/27256124>.
Neeha, V. S. y Kinth, P. (2013). Nutrigenomics research: A review. Journal of Food Science and Technology, 50(3), 415–428. DOI: <http://doi.org/10.1007/s13197-012-0775-z>.
Omenn, G. S. et al. (2015). Metrics for the human proteome project 2015: Progress on the human proteome and guidelines for high-confidence protein identification. Journal of Proteome Research, 14(9), 3452–3460. DOI: <http://doi.org/10.1021/acs.jproteome.5b00499>.
Park, S., Sadanala, K. C. y Kim, E.-K. (2015). A Metabolomic Approach to Understanding the Metabolic Link between Obesity and Diabetes. Molecules and Cells. DOI: <http://doi.org/10.14348/molcells.2015.0126>.
Ravelli, G. P., Stein, Z. A. y Susser, M. W. (1976). Obesity in Young Men after Famine Exposure in Utero and Early Infancy. New England Journal of Medicine, 295(7), 349–353. DOI: <http://doi.org/10.1056/NEJM197608122950701>.
Reichetzeder, C. et al. (2016). Developmental Origins of Disease - Crisis Precipitates Change. Cellular Physiology and Biochemistry, 39(3), 919–938. DOI: <http://doi.org/10.1159/000447801>.
Vandiver, A. R., Irizarry, R. Hansen, K, Garza, L., Runarsson, A., Li, X., Chien, A., Wang, T., Leung, S. Kang, S y Feinberg, A. (2015). Age and sun exposure-related widespread genomic blocks of hypomethylation in nonmalignant skin. Genome Biology. DOI: <https://doi.org/10.1186/s13059-015-0644-y>.
Venter, J. C. et al. (2001). The sequence of the human genome. Science, 291(5507), 1304–1351. DOI: <http://doi.org/10.1126/science.1058040>.
Watson, J. D. y Crick, F. H. C. (1953). Molecular structure of nucleic acids. Nature. DOI: <http://doi.org/10.1097/BLO.0b013e3181468780>.
Publicado
Número
Sección
Licencia
Derechos de autor 2017 Revista Digital Universitaria

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.