The "omics" sciences, how does this help health sciences?

Authors

  • Maria Eugenia Frigolet Vázquez Vela Universidad Nacional Autónoma de México
  • Ruth Gutiérrez-Aguilar Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.22201/codeic.16076079e.2017.v18n7.a3

Keywords:

DNA (deoxyribonucleic acid), RNA (ribonucleic acid), proteins, metabolites, "omics" sciences

Abstract

“Omics” are defined as a group of disciplines that aim to collect a large number of biological molecules involved in the function of an organism. In the last decades, technological evolution allowed us to better understand global changes in genes, proteins and metabolites, giving rise to genomics, proteomics, metabolomics, among others. These fields have contributed to the generation of knowledge regarding the cause of diseases. The application of the “omics” to the clinics could help diagnose or prevent certain diseases. In the future, treatment will be specific for each patient according to their genetical background and environment exposure, creating personalized medicine. This article defines every –omic, the technological tools used for its analysis, and examples of its clinical applications. 

>> Read more

Author Biographies

Maria Eugenia Frigolet Vázquez Vela, Universidad Nacional Autónoma de México

Hospital Infantil de México “Federico Gómez”
Realizó una estancia postdoctoral en la Universidad de Toronto y el Hospital Mount Sinai en Toronto, Canadá, especializándose en la acción de la insulina en adipocitos. Obtuvo el grado de maestría y doctorado con mención honorífica en Ciencias Bioquímicas por la Universidad Nacional Autónoma de México (UNAM); es licenciada en Nutrición y Ciencia de los Alimentos por la Universidad Iberoamerciana.
Actualmente es investigadora en Ciencias Médicas en el Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes del Hospital Infantil de México “Federico Gómez¨ y es miembro del Sistema Nacional de Investigadores, nivel 1. Ha publicado 12 artículos, los cuales han sido citados más de 400 veces. Sus principales temas de investigación se centran en los efectos metabólicos de ciertos nutrimentos sobre el metabolismo del tejido adiposo y en la influencia de la cirugía bariátrica sobre el metabolismo humano. 

Ruth Gutiérrez-Aguilar, Universidad Nacional Autónoma de México

Hospital Infantil de México “Federico Gómez”.
Realizó una estancia postdoctoral en el Instituto de Enfermedades Metabólicas de la Universidad de Cincinnati, Estados Unidos. Es doctora en Genética Humana en Obesidad y Diabetes tipo 2 en la Universidad de Lille 2 en Francia. Estudió la maestría de Ciencias Bioquímicas en la Facultad de Química de la UNAM, obteniendo la Medalla Alfonso Caso, donde también estudió la licenciatura de Química en Alimentos. Es parte de la Unidad Periférica de la Facultad de Medicina de la UNAM ubicada en el Hospital Infantil de México “Federico Gómez” y es responsable del Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes. Forma parte del Sistema Nacional de Investigadores, nivel 1 y ha publicado 22 artículos con más de 700 citas. Sus líneas de investigación incluyen la descripción de la función de nuevos genes asociados a la obesidad, la metabolómica de la obesidad y la influencia de ciertos nutrimentos/medicamentos sobre la fisiología y metabolismo animal.

References

Avery, O. T., MacLeod, C. M., y McCarty, M. (1944). Studies on the chemical nature of the substance inducingtransformation of pneumococcal types. Journal of Experimental Medicine, 79(2), 137–158. DOI: <http://doi.org/10.1084/jem.79.2.137>.

Bargalló-Rocha, J. E. et al. (2015). Cost-Effectiveness of the 21-Gene Breast Cancer Assay in Mexico. Advances in Therapy, 32(3), 239–253. DOI: <http://doi.org/10.1007/s12325-015-0190-8>.

Begum, F., Ghosh, D., Tseng, G. C. y Feingold, E. (2012). Comprehensive literature review and statistical considerations for GWAS meta-analysis. Nucleic Acids Research, 40(9), 3777–3784. DOI: <http://doi.org/10.1093/nar/gkr1255>.

Burdge, G. C. y Lillycrop, K. A. (2014). Environment-physiology, diet quality and energy balance: the influence of early life nutrition on future energy balance. Physiology y Behavior. DOI: <http://doi.org/10.1016/j.physbeh.2013.12.007>.

Chevalier, S., Marliss, Morais, Lamarche y Gougeon (2005). Whole-body protein anabolic response is resistant to the action of insulin in obese women. American Journal of Clinical Nutrition, 82(2), 355–365. DOI: <https://www.ncbi.nlm.nih.gov/pubmed>.

Corvol, H. et al. (2016). Translating the genetics of cystic fibrosis to personalized medicine. Translational Research. DOI: <http://doi.org/10.1016/j.trsl.2015.04.008>.

Desai, M., Jellyman, J. K. y Ross, M. G. (2015). Epigenomics, gestational programming and risk of metabolic syndrome. International Journal of Obesity. DOI: <http://doi.org/10.1038/ijo.2015.13>.

Fiehn, O., Timothy Garvey, W., Newman, J. W., Lok, K. H., Hoppel, C. L. y Adams, S. H. (2010). Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS ONE, 5(12), 1–10. DOI: <http://doi.org/10.1371/journal.pone.0015234>.

Gutierrez Aguilar, R., Kim, D. H., Woods, S. C. y Seeley, R. J. (2011). Expression of New Loci Associated With Obesity in Diet-Induced Obese Rats: From Genetics to Physiology. Obesity (Silver Spring). DOI: <https://doi.org/10.1038/oby.2011.236>.

Han, Y. y He, X. (2016). Integrating epigenomics into the understanding of biomedical insight. Bioinformatics and Biology Insights. Recuperado de: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5138066/>.

Harrow, J. et al. (2012). GENCODE: The reference human genome annotation for the ENCODE project. Genome Research, 22(9), 1760–1774. DOI: <http://doi.org/10.1101/gr.135350.111>.

Hershey, A. D. y Chase, M. (1952). Independent functions of viral protein and nucleic acid in growth of bacteriophage. Journal of General Physiology, 36(1), 39–56. Reciperado de: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2147348/>.

International Human Genome Sequencing Consortium. (2004). International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature, 431, 931–945. Recuperado de: <http://www.nature.com/nature/journal/v431/n7011/full/nature03001.html?foxtrotcallback=true>.

Kosteria, I. et al. (2017). The use of proteomics in assisted reproduction. In Vivo, 31(3), 267–283. DOI: <http://doi.org/10.21873/invivo.11056>.

LaFramboise, T. (2009). Single nucleotide polymorphism arrays: A decade of biological, computational and technological advances. Nucleic Acids Research. DOI: <http://doi.org/10.1093/nar/gkp552>.

Manolio, T. A. (2010). Genomewide Association Studies and Assessment of the Risk of Disease. The New England Journal of Medicine, 363(2), 166–176. DOI: <http://doi.org/10.1056/NEJMra0905980>.

Merched, A. J. et al. (2008). Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. The FASEB Journal, 22(10), 3595–3606. DOI: <http://doi.org/10.1096/fj.08-112201>.

Milagro, F. I. et al. (2009). High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats. Journal of Physiology and Biochemistry, 65(1), 1-9. Rrecuperado de: <http://www.ncbi.nlm.nih.gov/pubmed/19588726>.

Mishra, N. (2010). Introduction to Proteomics: Principles and Applications. Introduction to Proteomics: Principles and Applications. DOI: <http://doi.org/10.1002/9780470603871>.

Moore, S. C. et al. (2014). Human metabolic correlates of body mass index. Metabolomics, 10(2), 259–269. DOI: <http://doi.org/10.1007/s11306-013-0574-1>.

Moran-Ramos, S. et al. (2017). An amino acid signature associated with obesity predicts 2-year risk of hypertriglyceridemia in school-age children. Scientific Reports. Recuperado de: <https://www.nature.com/articles/s41598-017-05765-4>.

Motta Murguia, L. y Saruwatari-Zavala, G. (2016). Mexican Regulation of Biobanks. The Journal of Law, Medicine y Ethics : A Journal of the American Society of Law, Medicine y Ethics, 44(1), 58–67. Recuperado de: <https://www.ncbi.nlm.nih.gov/pubmed/27256124>.

Neeha, V. S. y Kinth, P. (2013). Nutrigenomics research: A review. Journal of Food Science and Technology, 50(3), 415–428. DOI: <http://doi.org/10.1007/s13197-012-0775-z>.

Omenn, G. S. et al. (2015). Metrics for the human proteome project 2015: Progress on the human proteome and guidelines for high-confidence protein identification. Journal of Proteome Research, 14(9), 3452–3460. DOI: <http://doi.org/10.1021/acs.jproteome.5b00499>.

Park, S., Sadanala, K. C. y Kim, E.-K. (2015). A Metabolomic Approach to Understanding the Metabolic Link between Obesity and Diabetes. Molecules and Cells. DOI: <http://doi.org/10.14348/molcells.2015.0126>.

Ravelli, G. P., Stein, Z. A. y Susser, M. W. (1976). Obesity in Young Men after Famine Exposure in Utero and Early Infancy. New England Journal of Medicine, 295(7), 349–353. DOI: <http://doi.org/10.1056/NEJM197608122950701>.

Reichetzeder, C. et al. (2016). Developmental Origins of Disease - Crisis Precipitates Change. Cellular Physiology and Biochemistry, 39(3), 919–938. DOI: <http://doi.org/10.1159/000447801>.

Vandiver, A. R., Irizarry, R. Hansen, K, Garza, L., Runarsson, A., Li, X., Chien, A., Wang, T., Leung, S. Kang, S y Feinberg, A. (2015). Age and sun exposure-related widespread genomic blocks of hypomethylation in nonmalignant skin. Genome Biology. DOI: <https://doi.org/10.1186/s13059-015-0644-y>.

Venter, J. C. et al. (2001). The sequence of the human genome. Science, 291(5507), 1304–1351. DOI: <http://doi.org/10.1126/science.1058040>.

Watson, J. D. y Crick, F. H. C. (1953). Molecular structure of nucleic acids. Nature. DOI: <http://doi.org/10.1097/BLO.0b013e3181468780>.

Published

2017-10-12