The "omics" sciences, how does this help health sciences?
DOI:
https://doi.org/10.22201/codeic.16076079e.2017.v18n7.a3Keywords:
DNA (deoxyribonucleic acid), RNA (ribonucleic acid), proteins, metabolites, "omics" sciencesAbstract
“Omics” are defined as a group of disciplines that aim to collect a large number of biological molecules involved in the function of an organism. In the last decades, technological evolution allowed us to better understand global changes in genes, proteins and metabolites, giving rise to genomics, proteomics, metabolomics, among others. These fields have contributed to the generation of knowledge regarding the cause of diseases. The application of the “omics” to the clinics could help diagnose or prevent certain diseases. In the future, treatment will be specific for each patient according to their genetical background and environment exposure, creating personalized medicine. This article defines every –omic, the technological tools used for its analysis, and examples of its clinical applications.
References
Avery, O. T., MacLeod, C. M., y McCarty, M. (1944). Studies on the chemical nature of the substance inducingtransformation of pneumococcal types. Journal of Experimental Medicine, 79(2), 137–158. DOI: <http://doi.org/10.1084/jem.79.2.137>.
Bargalló-Rocha, J. E. et al. (2015). Cost-Effectiveness of the 21-Gene Breast Cancer Assay in Mexico. Advances in Therapy, 32(3), 239–253. DOI: <http://doi.org/10.1007/s12325-015-0190-8>.
Begum, F., Ghosh, D., Tseng, G. C. y Feingold, E. (2012). Comprehensive literature review and statistical considerations for GWAS meta-analysis. Nucleic Acids Research, 40(9), 3777–3784. DOI: <http://doi.org/10.1093/nar/gkr1255>.
Burdge, G. C. y Lillycrop, K. A. (2014). Environment-physiology, diet quality and energy balance: the influence of early life nutrition on future energy balance. Physiology y Behavior. DOI: <http://doi.org/10.1016/j.physbeh.2013.12.007>.
Chevalier, S., Marliss, Morais, Lamarche y Gougeon (2005). Whole-body protein anabolic response is resistant to the action of insulin in obese women. American Journal of Clinical Nutrition, 82(2), 355–365. DOI: <https://www.ncbi.nlm.nih.gov/pubmed>.
Corvol, H. et al. (2016). Translating the genetics of cystic fibrosis to personalized medicine. Translational Research. DOI: <http://doi.org/10.1016/j.trsl.2015.04.008>.
Desai, M., Jellyman, J. K. y Ross, M. G. (2015). Epigenomics, gestational programming and risk of metabolic syndrome. International Journal of Obesity. DOI: <http://doi.org/10.1038/ijo.2015.13>.
Fiehn, O., Timothy Garvey, W., Newman, J. W., Lok, K. H., Hoppel, C. L. y Adams, S. H. (2010). Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS ONE, 5(12), 1–10. DOI: <http://doi.org/10.1371/journal.pone.0015234>.
Gutierrez Aguilar, R., Kim, D. H., Woods, S. C. y Seeley, R. J. (2011). Expression of New Loci Associated With Obesity in Diet-Induced Obese Rats: From Genetics to Physiology. Obesity (Silver Spring). DOI: <https://doi.org/10.1038/oby.2011.236>.
Han, Y. y He, X. (2016). Integrating epigenomics into the understanding of biomedical insight. Bioinformatics and Biology Insights. Recuperado de: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5138066/>.
Harrow, J. et al. (2012). GENCODE: The reference human genome annotation for the ENCODE project. Genome Research, 22(9), 1760–1774. DOI: <http://doi.org/10.1101/gr.135350.111>.
Hershey, A. D. y Chase, M. (1952). Independent functions of viral protein and nucleic acid in growth of bacteriophage. Journal of General Physiology, 36(1), 39–56. Reciperado de: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2147348/>.
International Human Genome Sequencing Consortium. (2004). International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature, 431, 931–945. Recuperado de: <http://www.nature.com/nature/journal/v431/n7011/full/nature03001.html?foxtrotcallback=true>.
Kosteria, I. et al. (2017). The use of proteomics in assisted reproduction. In Vivo, 31(3), 267–283. DOI: <http://doi.org/10.21873/invivo.11056>.
LaFramboise, T. (2009). Single nucleotide polymorphism arrays: A decade of biological, computational and technological advances. Nucleic Acids Research. DOI: <http://doi.org/10.1093/nar/gkp552>.
Manolio, T. A. (2010). Genomewide Association Studies and Assessment of the Risk of Disease. The New England Journal of Medicine, 363(2), 166–176. DOI: <http://doi.org/10.1056/NEJMra0905980>.
Merched, A. J. et al. (2008). Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. The FASEB Journal, 22(10), 3595–3606. DOI: <http://doi.org/10.1096/fj.08-112201>.
Milagro, F. I. et al. (2009). High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats. Journal of Physiology and Biochemistry, 65(1), 1-9. Rrecuperado de: <http://www.ncbi.nlm.nih.gov/pubmed/19588726>.
Mishra, N. (2010). Introduction to Proteomics: Principles and Applications. Introduction to Proteomics: Principles and Applications. DOI: <http://doi.org/10.1002/9780470603871>.
Moore, S. C. et al. (2014). Human metabolic correlates of body mass index. Metabolomics, 10(2), 259–269. DOI: <http://doi.org/10.1007/s11306-013-0574-1>.
Moran-Ramos, S. et al. (2017). An amino acid signature associated with obesity predicts 2-year risk of hypertriglyceridemia in school-age children. Scientific Reports. Recuperado de: <https://www.nature.com/articles/s41598-017-05765-4>.
Motta Murguia, L. y Saruwatari-Zavala, G. (2016). Mexican Regulation of Biobanks. The Journal of Law, Medicine y Ethics : A Journal of the American Society of Law, Medicine y Ethics, 44(1), 58–67. Recuperado de: <https://www.ncbi.nlm.nih.gov/pubmed/27256124>.
Neeha, V. S. y Kinth, P. (2013). Nutrigenomics research: A review. Journal of Food Science and Technology, 50(3), 415–428. DOI: <http://doi.org/10.1007/s13197-012-0775-z>.
Omenn, G. S. et al. (2015). Metrics for the human proteome project 2015: Progress on the human proteome and guidelines for high-confidence protein identification. Journal of Proteome Research, 14(9), 3452–3460. DOI: <http://doi.org/10.1021/acs.jproteome.5b00499>.
Park, S., Sadanala, K. C. y Kim, E.-K. (2015). A Metabolomic Approach to Understanding the Metabolic Link between Obesity and Diabetes. Molecules and Cells. DOI: <http://doi.org/10.14348/molcells.2015.0126>.
Ravelli, G. P., Stein, Z. A. y Susser, M. W. (1976). Obesity in Young Men after Famine Exposure in Utero and Early Infancy. New England Journal of Medicine, 295(7), 349–353. DOI: <http://doi.org/10.1056/NEJM197608122950701>.
Reichetzeder, C. et al. (2016). Developmental Origins of Disease - Crisis Precipitates Change. Cellular Physiology and Biochemistry, 39(3), 919–938. DOI: <http://doi.org/10.1159/000447801>.
Vandiver, A. R., Irizarry, R. Hansen, K, Garza, L., Runarsson, A., Li, X., Chien, A., Wang, T., Leung, S. Kang, S y Feinberg, A. (2015). Age and sun exposure-related widespread genomic blocks of hypomethylation in nonmalignant skin. Genome Biology. DOI: <https://doi.org/10.1186/s13059-015-0644-y>.
Venter, J. C. et al. (2001). The sequence of the human genome. Science, 291(5507), 1304–1351. DOI: <http://doi.org/10.1126/science.1058040>.
Watson, J. D. y Crick, F. H. C. (1953). Molecular structure of nucleic acids. Nature. DOI: <http://doi.org/10.1097/BLO.0b013e3181468780>.
Published
Issue
Section
License
Copyright (c) 2017 Revista Digital Universitaria

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.