The DNA of your dinner: what secrets do food additives hide?
DOI:
https://doi.org/10.22201/ceide.16076079e.2024.25.4.3Keywords:
Food additives, Nanoparticle, xenobiotic, Deoxyribonucleic acid (DNA)Abstract
We can find food additives in most of the processed foods we consume daily; their objective is to improve the appearance or preserve products. Some additives may contain nanoparticles composed of metals or metal oxides, such as gold, silver, and titanium dioxide. In recent years, their use has been called into question because the small size of nanoparticles allows them to enter the blood, be distributed to various tissues and enter cells, potentially causing damage to deoxyribonucleic acid (dna), which is known as genotoxicity. dna makes us who we are, and it is important to study any factors that can alter it, as this could affect our health and influence the development of diseases such as cancer. To date, there is little evidence of the genotoxic effects that nanoparticle additives may have; however, in this text we tell you a little about what the scientific community has discovered and we emphasize what still needs to be investigated.
References
Alba García-Rodríguez, L. V., Marcos, R., y Hernández, A. (2018). Titanium dioxide nanoparticles translocate through differentiated Caco-2 cell monolayers, without disrupting the barrier functionality or inducing genotoxic damage. Journal of applied toxicology, 38(9), 1195–1205. https://doi.org/10.1002/jat.3630
ans Panel (efsa Panel on Food Additives and Nutrient Sources Added to Food). (2015). Scientific Opinion on the re-evaluation of iron oxides and hydroxides (E 172) as food additives. efsa Journal, 13(12), 4317-57. https://doi.org/10.2903/j.efsa.2015.4317
ans Panel (efsa Panel on Food Additives and Nutrient Sources Added to Food). (2016). Scientific opinion on the re-evaluation of silver (E 174) as food additive. efsa Journal, 14(1), 4364-64. https://doi.org/10.2903/j.efsa.2016.4364
Comisión Europea. (2022). Recomendación de la comisión de 10 de junio de 2022 relativa a la definición de nanomaterial (Texto pertinente a efectos del EEE) (2022/C 229/01). https://tinyurl.com/2327c9dp
McClements, D. y Xiao, H. (2017). Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. npj science of food, 1(6). https://doi.org/10.1038/s41538-017-0005-1
Monteiro, A., Cannon, G., Levy, R. B., Lawrence, M., Costa Louzada, L., y Pereira-Machado, P. (2019). Ultra-processed foods, diet quality, and health using the NOVA classification system. fao. https://tinyurl.com/stytp4k2
Narciso, L., Coppola L., Lori, G., Andreoli, C., Zjino, A., Bocca, B., Petrucci, F., Di Virgilio, A., Martinelli, A., Tinari, A., Maranghi, F., y Tassinari, R. (2020). Genotoxicity, biodistribution and toxic effects of silver nanoparticles after in vivo acute oral administration. NanoImpact, 18, 100221. https://doi.org/10.1016/j.impact.2020.100221
Patlolla, A. K., Hackett, D., y Tchounwou, P. B. (2015). Genotoxicity study of silver nanoparticles in bone marrow cells of Sprague-Dawley rats. Food and chemical toxicology, 85, 52–60. https://doi.org/10.1016/j.fct.2015.05.005
Organización de las Naciones Unidas para la Agricultura y la Alimentación (fao) y la Organización Mundial de la Salud (oms). (2023). Norma general para los aditivos alimentarios. Codex STAN 192-1995. https://tinyurl.com/362w9d6b
Urrutia-Ortega, I. M., Garduño-Balderas, L. G., Delgado-Buenrostro, N. L., Freyre-Fonseca, V., Flores-Flores, J. O., González-Robles, A., Pedraza-Chaverri, J., Hernández-Pando, R., Rodríguez-Sosa, M., León-Cabrera, S., Terrazas, L. I., van Loveren, H., y Chirino, Y. I. (2016). Food-grade titanium dioxide exposure exacerbates tumor formation in colitis associated cancer model. Food and chemical toxicology, 93, 20–31. https://doi.org/10.1016/j.fct.2016.04.014
Zlatanova, J. y Holde, K. (2023). Molecular Biology structure and dynamics of genomes and proteomes (2.a ed.). crc Press.
Villani, P., Eleuteri, P., Pacchierotti, F., Maranghi, F., Tassinari, R., Narciso, L., Tait, S., Lori, G., Andreoli, C., Huet, S., Jarry, G., Fessard, V., y Cordelli, E. (2022). Pyrogenic synthetic amorphous silica (NM-203): Genotoxicity in rats following sub-chronic oral exposure. Mutation research. Genetic toxicology and environmental mutagenesis, 876-877, 503458. https://doi.org/10.1016/j.mrgentox.2022.503458
Published
Issue
Section
License
Copyright (c) 2024 Revista Digital Universitaria

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.