The science of science
DOI:
https://doi.org/10.22201/codeic.16076079e.2018.v19n4.a1Keywords:
databases, scientific literature, indicators, metadata, journalsAbstract
Scientometrics consists of employing methods, tools and quantitative techniques based on the analysis of scientific information and production, especially academic articles. Its purpose is to analyze, evaluate and visualize information to obtain proportions, trends, patterns, relationships and indicators. The applications of scientometrics range from administration of bibliographical resources; recovery of information, maintenance and restoration of collections; evaluation, diagnosis, and management of scientific policy, state of the art and reviews; from analysis, development, structure, evolution and relations of scientific dynamics and science maps; to obtaining new knowledge. Due to the growing generation of scientific information, scientometrics is an analysis that is carried out frequently. This article presents a general introduction to scientometrics with respect to its characteristics, applications, methods and examples.
References
CrossRe. (2017). Status. Recuperado de: https://data.crossref.org/reports/statusReport.html.
De Solla Price, Derek J. (1963). Little Science, Big Science. Nueva York: Columbia University Press.
Garfield, E., Sher, I. H. (1964). Genetics Citation Index (from the reviewers). Science Fortnightly, 1 (14), 4.
Hicks, Diana, Wouters, Paul, Waltman, Ludo, de Rijcke, Sara y Rafols, Ismael (2015). Bibliometrics: The Leiden Manifesto for research metrics. Nature, 520, 429-431.
Leydesdorff, L. (2001). The Challenge of Scientometrics. Irvine, California: Universal-Publishers.
Pendlebury, D. A. (2009). The use and misuse of journal metrics and other citation indicators. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 57 (1), 1-11. DOI: https://doi.org/10.1007/s00005-009-0008-y.
Pudovkin, Alexander I., Garfield, Eugene. (2004). Rank-normalized impact factor: A way to compare journal performance across subject categories. Proceedings of the Association for Information Science and Technology 41 (1), 507-515. DOI: https://doi.org/10.1002/meet.1450410159.
Sugimoto, Cassidy. R., Work, Sam, Lariviere, Vincent y Haustein, Stefanie (2017). Scholarly use of social media and altmetrics: A review of the literature. Journal of Association for Information Science and Technology, 68 (9), 2037-2062. DOI: https://doi.org/10.1002/asi.23833.
Trujillo, Caleb M., Long, Tammy M. (2018). Document co-citation analysis to enhance transdisciplinary research. Science Advances, 4 (1), 1-9. DOI: https://doi.org/10.1126/sciadv.1701130.
Van Noorden, Richard (2010). Metrics: a profusion of measures. Nature, 465, 864-866. DOI: https://doi.org/10.1038/465864a.
Yue, W. y W., Concepcion y Rousseau, R. (2007). The immediacy index and the journal impact factor: Two highly correlated derived measures. Canadian Journal of Information and Library Science, 28 (1), 33-48. Recuperado de: https://www.researchgate.net/publication/278738130_The_immediacy_index_and_the_journal_impact_factor_Two_highly_correlated_derived_measures.
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.